San Francisco-Oakland Bay Bridge Seismic Retrofit Project

Independent Review of Analysis and Strategy to Shim Bearings at Pier E2 to Achieve Seismic Design Requirements Modjeski and Masters, Inc. August 9, 2013

Appendices 1-5

Appendices

This Page Intentionally Left Blank

Appendix 1

Capacity of Bearings and Shear Keys

SF-OB ß Proiects BEARING EVAL. Subiect Checked by of 7 Experience great bridges Sheet No. -FIND TRANSVERSE CAPALITIES OF BEARINGS GIVEN THE VERTICAL & LONGIT, LOADS OF MAX, TRANSVERSE & MAX UPLIFT CASES, BY INSP. THESE ARE 2 CONTROLLING THE CASES. GIVEN ! BOLT FORCE AFTER LOSSES! 2510 KN (2789 KN LOAD WITH 10% LOSSES PER MARWAN) My CONCERTE = 0.67 Ms, STEEL = 0.50 (CLASS B CONTING) TRANSVERSE DIMENSIONS! LONGIT. DIMENSIONS: PIN 975 344 ASSME BY & PL ARE AT MIDPOINT OF CONTACT REA BETWEEN BRG, BTM. HOUSING & HAD DOWN 150 TRANSI $P_7 = \frac{V_7(925-140)}{10.30} = \frac{785}{10.30} V_7$ 1030 30-++* -150 LONGIT $P_{L} = \frac{V_{L}(925 - 344)}{1810} = \frac{581}{1810} V_{L}$ 1810 P LCAOLASE 5: (MAX. TRANSVERE) TRANSV: 30496 KN LUAD CASE 4! (MAX. UPLIFT) TENSV: 25287 LIN Longer: 8186 KN LONGIT: 1628 KN POWNFREE: 16441 LeN UPUFY: 9539 KN 40

Made by 13I Projects SF-OB R BEARING EVAL. REV. 8/5/13 Subject Checked by MODJESK1 and MASTERS of 7 Sheet No. Experience great bridges MANNER TO A FILE CAP WITH AXIALS MOMENTS. LOOK AT SUSTEM IN SIMILAR BB (\mathcal{D}) Ò \bigcirc Ø IT= 16(800) 2+4/480) 2+ 4(160) 2 Ē 1260 480 800 = 11 264 000 mm² [z] ×800 = 14 080mm @/E LONGIT. 9.00 * 180 = 23 467 mm B/E x100 = 70 400 mm O/D to +MT <u>[</u><u>A</u>] I= 12(1260) + 4(900) + 4(540) + 4(180) 2 -180 = 23 587 200 mm2 +M, KHIS 15 0 ×120 = 18 720 mm 11/101 ×100 = 26 208 mm 12/17 6 0 x 540 = 43 680 MM 3/13 x140 = 131 040 mm A 151 Ī 0 e) Ø LOADLASE 4 8 · NET GAMANG = 24(2510 KN) - 9539 KN = 50 701 KN (2113 KN/Bar) · LONGIT, COUPLE = 581/1810 × 1628 KN = 523 KN / # · MOMENT FEAM LONGIT COUPLE = 523×1810= 946 630 KN-MM · LONGIT COSE EFFELTS! 17/18 = 946630/18 720 = +- 51 kN 12 /17 = 946 630/26 20B = +/_ 36 KN 13/151 = 946 630/43 680 = +/- 22 KN 四/国=946 630/131 040= +/- 7 KN · TRANSV, COUPLE = 785/1030 . VT · MOMENT FROM TRANSV. COUPLE = 785/1030 . VT. 1030 -> 785 VT · TRANSV. COUPLE EFFELTS: A) (= +1- 785/14080. VT B/E = +/- 785/23 467 . VT @/ 0 = +/- 785/70 400 . Vr BASIC EQUATION TO SOLVE: US STEEL . Z. BOLAN LOADS - VT, WHERE VT IS TRANSV. CAPACITY WITH CONSTANT URIFT & VL FORCES,

1 BLOCK = ¼ Inch

www.modjeski.com

Projects SF-OB B DBI Made by_ Subject BEARING EVAL, REV. 8/5/19 Checked by **MODJESKI and MASTERS** _of_7 Sheet No. Experience great bridges L.C. 4, Carto SOLVE THES IN EXCEL, AS BOLT LOADS ARE ALSO A FINCTION OF VT. ADDITIONALLY THEY HAVE TO BE LIMMED TO PRELOAD OF 2510 KN ON "COMPRESSION" SIDE, WHERE VY HELPS REDUCE UPLIFT EFFECTS, (SEE PAGE 4 FOR RESULTS) VT GRAGTY= 21712 LN/BEG (25287 KN APPLIED, + 16 %) LOADCASE 5: · NET CLAMPING = 24 (2510 KN) = 60 2 40 KN · Lowler. Course = 581/1810 × 8186 = 2628 KN 1 1 · MOMENT FROM LONGIT. CONPLE = 2628 × 1810 = 4 756 680 KN-MM · LONGIT, Capper FIFECTS: [[/ B] = 4756 680/18 720 = +- 254 KN 四/团=4756680/26 20R = 4- 181 KN 13/16 = 4 756 680/43 680 = +1- 109 KN 啊/10= 4 733 680/131 040 - 5- 36 KN · TRANSV, COUPLE = 785/1030 . VT , MOMENT FROM TRANSV. COUPLE = 785. VT · TRANSV. CAPLE EFFECTS: @/ @= +/- 785/14080 · V+ B/B=+1- 785/23467.Vr €/ 0 = +/_ 785/70 400 · VT · IN ADDITION, VERTICAL DOWNFORCE CAN NEGATE SOME UPLIFT: (16 441) 124 = 685 KN/BOLT CAN BE ADDED BACK IN, UT TO PRELOAD FORCE OF 2510 KN SOLVE IN EXCEL: (SEE PAGE 5 FOR RESULTS) VT CAPACITY = 25652 KN/BRG (30496 KN APPLIED, +19 %) 42

1 BLOCK = ¼ Inch

Modjeski & Masters, Inc	SF OB B	DBI rev:	7/31/2013
Engineers	Bearing Capacity		8/5/2013
Loadcase 4			PG. 4/7

Loadcase 4

V longit.	1628 kN
*	

Vt	21,712 kN	(iterate this value)	
V Resulta	ant 21,773 kN	4	
sum	Anchor Forces coeff friction Friction Force	43545 kN 0.5 21773 kN (100.00% V Resultant)	
	A1 851	B1C1D1E1F113361820230425102510	
A2	866	2510	F2
A3	880	2510	F3
A4	895	2510	F4
A5	909	2510	F5
A6	924	2510	F6
A7	938	2510	F7
	953 A8	14381922240625102510B8C8D8E8F8	

Modjeski & Masters, IncSF OB BDBI7/31/2013EngineersBearing Capacityrev:8/5/2013

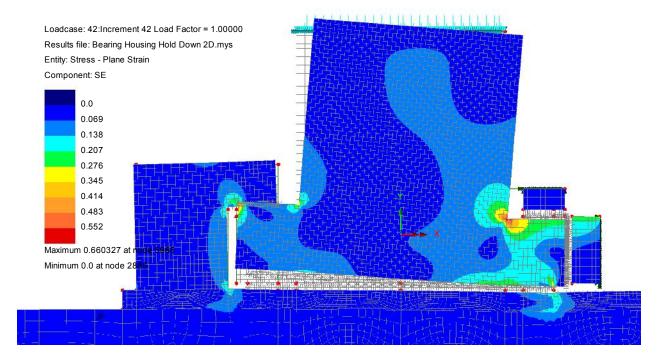
PG.5/7

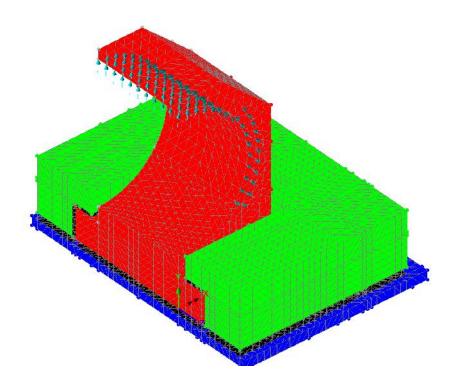
Loadcase 5

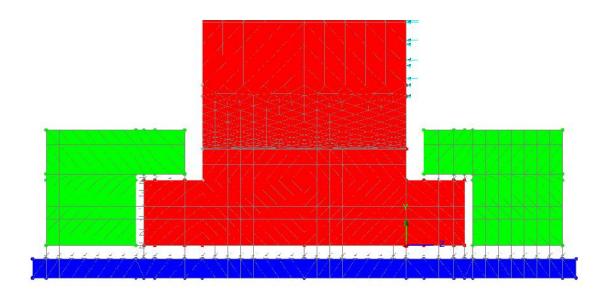
V longit. 8186 kN Vt 25,652 kN (iterate this value) V Resultant 26,926 kN sum Anchor Forces 53852 kN coeff friction 0.5 **Friction Force** 26926 kN (100.00% V Resultant) F1 A1 B1 C1 D1 E1 1511 2083 2510 2510 2510 2510 A2 1584 2510 F2 Α3 1656 2510 F3 A4 1729 2510 F4 A5 1801 2510 F5 A6 1874 2510 F6 A7 1946 2510 F7 2019 2510 2510 2510 2510 2510 A8 B8 C8 D8 E8 F8

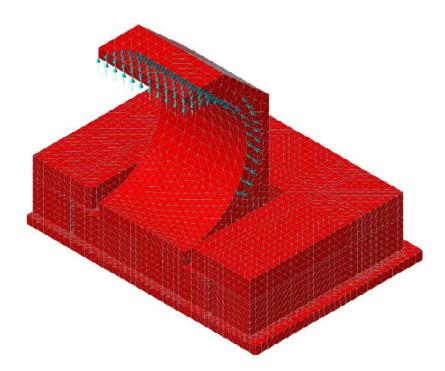
(

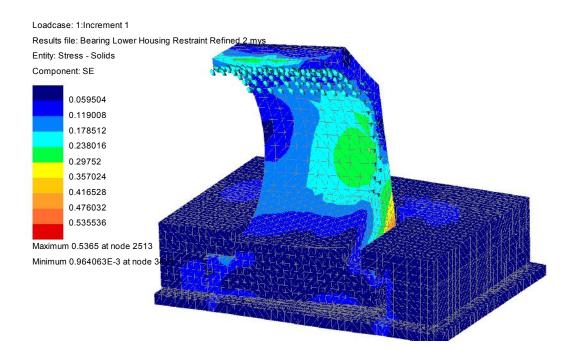
(

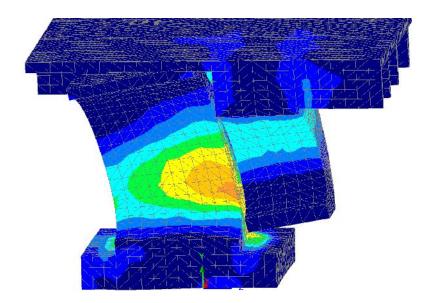

_

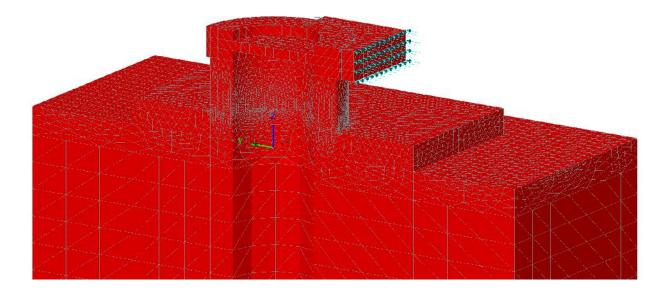

(

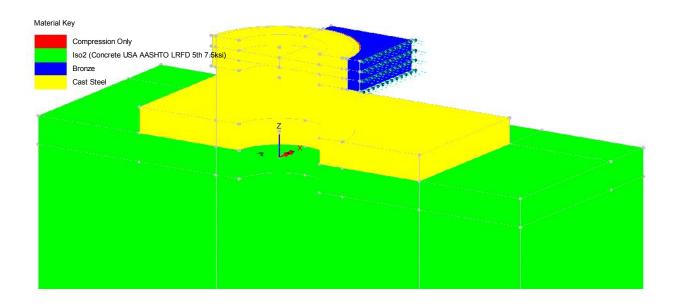

Projects SF-0B Made by_ BEARING & SHEAR KEY Checked by_ SUMMARY of Experience great bridges Sheet No. - SHEAR KEY CAPACITY APPROXIMATELY: 65451 KN (CONSERV, ASSUMPTION BASED ON HAND-CALLOS ONLY.) EACH -IN LOADCASE 4, BEARINGS HAVE 21712 KN CAPACITY TO RESIST VT, ASSUMING VI IS 1628 KN AND UPLIFT IS 9539 KN, LOADCASE 4 WAS 25287 KN PER BEARING, BY INSPECTION, THE COMBINATION OF & BEARINGS & 2 SHEAR KEYS SHOULD BE ADEQUATE, IN LOADCASE 5, BEARINGS EACH HAVE 25652 KN CAPACITY TO RESIST VT, ASSUMING VL IS 8186 LON AND DOWN FORCE IS 16441 KN. LOADCASE 5 HAS 30 496 KN PER BEARING, BY INSPECTION, THE COMBINATION OF 4 BEARINGS AND 2 SHEAR KEYS SHOULD BE ADEQUATE,

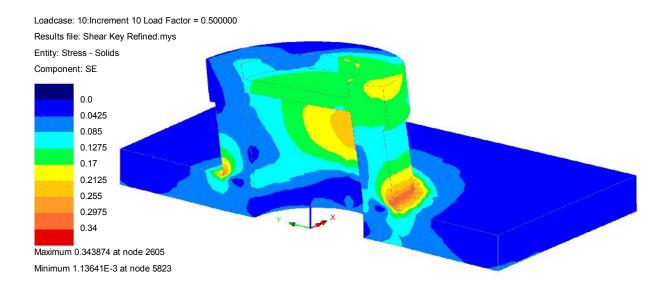

Appendix 2

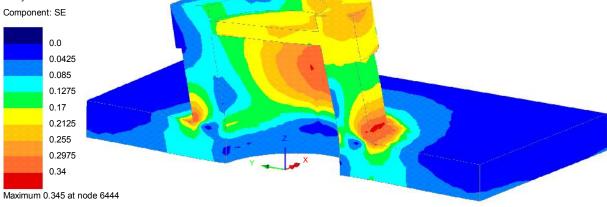

Finite Element Models of Bearings and Shear Keys

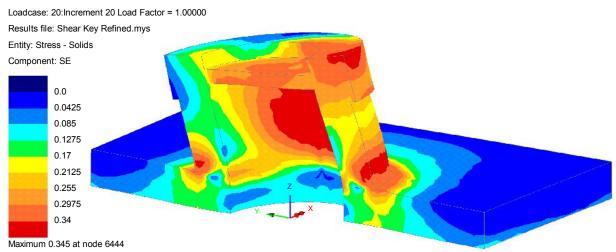


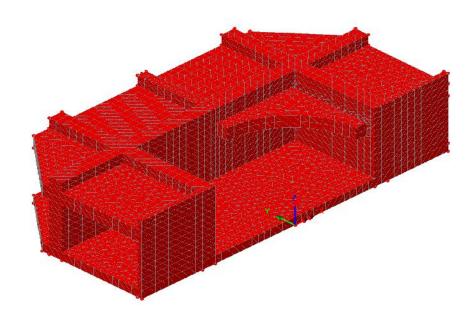


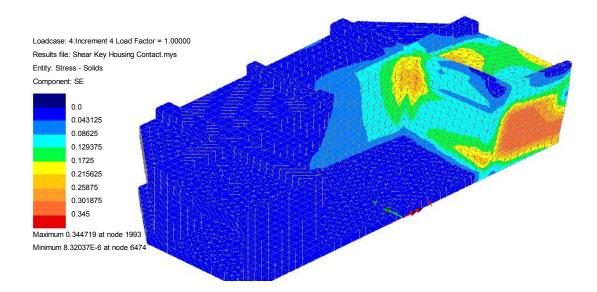









Loadcase: 14:Increment 14 Load Factor = 0.700000 Results file: Shear Key Refined.mys Entity: Stress - Solids



Minimum 1.59741E-3 at node 5823

Minimum 2.31343E-3 at node 5823

Appendix 3

- Appendix 3A Modjeski and Masters Calculations Steel Orthotropic Girder at Bearings and Steel Crossbeam at Shear Keys
- Appendix 3B TYLin Calculations Steel Orthotropic Girder at Bearings
- Appendix 3C Design Drawings Orthotropic Box Girder at Pier E2, Crossbeam at Pier E2, Bearing and Shear Key Details

Appendix 3A

Modjeski and Masters Calculations

Steel Orthotropic Girder at Bearings and Steel Crossbeam at Shear Keys

Project:	SFOBB - JN 3274
Subject:	Girder capacity
Content:	Lateral and longitudinal loads

Made by:	PAR	7/24/2013
Checked by:		
Sheet No.:		

Assumptions:

1. Look at it from a "block shear" perspective.

Local effects only - assumed that load spreads quickly away from bearing interface.
 A709M Grade 345 (A709 Grade 50) steel.

A709 Grade	50) steel			
Fy =	345	MPa	50	ksi
Fu =	450	MPa	65	ksi

Bearing Demands - Load Path C - compression and uplift from sheet 882AR2

	MN	k
Compression	68	15300
Uplift	17	3825
Longitudinal	15	3375
Transverse	30	6750

Bearing "footprint"

Length, L =	3500	mm	137.8	in
Width, w =	2900	mm	114.2	in

Block Shear Bottom Flange

If Atn <u><</u> 0.58 Av	n then		Rr = φbs (0.58 Fy Avg + Fu Atn)	6.13.4-1
otherwise			Rr =	6.14.4-2
	∳bs =	0.80		6.5.4.2

Case 1 - Looking at bottom flange from the most conservative perspective

1.	lanore	presence o	f transverse	webs and	Iongitudinal	shear plates	

Ignore presence of transverse webs and forigitudinal shear plates
 Assume free edges on one longitudinal and one transverse side

2. Assume free edges	on one lon	gitudinal and	d one trans	verse s	ide			
3. Assume bottom flan	ge thicknes	SS =	60	mm	2.36	in	transverse	
4. Assume bottom flan	ge thicknes	SS =	85	mm	3.35	in	longitudinal	
5. Assume	8	diameter	63	mm	2.48	in	holes transverse	
6. Assume	10	diameter	63	mm	2.48	in	holes longitudinal	
0			-					
Avg =		mm2	269.7	in2				
Atn =	243950	mm2	378.1	in2				
Avn =	143760	mm2	222.8	in2				
Rr =	115675.9	kN	26004	k	D/C =	= 0.26	Ok	
-								
	•							
0	-							
0								
Atn =	-	mm2						
Avn =	143760	mm2	222.8	in2				
_								
Rr =	30017.09	kN	6748	k	D/C =	= 1.00	Ok	
A '- 1								
0			-					
0	-							
Avn =	0	mm2	0.0	in2				
_							O 1	
Rr =	87822	kN	19742	ĸ	D/C =	= 0.34	Ok	
	 3. Assume bottom flan 4. Assume bottom flan 5. Assume 6. Assume 7. Transverse Axial and stands Atg = Avg = Atn = Avn = Rr = Shear area Atg = Avg = Atn = Avg = Atn = Avg = Atn = Avg = Ar = Avn = Rr = 	3. Assume bottom flange thickness 4. Assume bottom flange thickness 5. Assume 8 6. Assume 10 Transverse Axial and shear areas Atg = 297500 Avg = 174000 Atn = 243950 Avn = 143760 Rr = 115675.9 Shear areas only Atg = 0 Avg = 174000 Atn = 243950 Avg = 174000 Atn = 0 Avg = 174000 Atn = 0 Avg = 174000 Rr = 30017.09 Axial areas only Atg = 297500 Avg = 0 Atn = 243950 Avg = 0 Atn = 243950 Avg = 0 Atn = 243950 Avg = 0	3. Assume bottom flange thickness = 4. Assume bottom flange thickness = 5. Assume 8 diameter 6. Assume 10 diameter Transverse Axial and shear areas Atg = 297500 mm2 Avg = 174000 mm2 Atn = 243950 mm2 Avn = 143760 mm2 Rr = 115675.9 kN Shear areas only Atg = 0 mm2 Avg = 174000 mm2 Atg = 0 mm2 Avg = 174000 mm2 Atg = 0 mm2 Avg = 174000 mm2 Rr = 30017.09 kN Axial areas only Atg = 297500 mm2 Avg = 0 mm2	3. Assume bottom flange thickness = 60 4. Assume bottom flange thickness = 85 5. Assume 8 diameter 63 6. Assume 10 diameter 63 Transverse Axial and shear areas Atg = 297500 mm2 461.1 Avg = 174000 mm2 269.7 Atn = 243950 mm2 378.1 Avn = 143760 mm2 222.8 Rr = 115675.9 kN 26004 Shear areas only Atg = 0 mm2 0.0 Avg = 174000 mm2 269.7 Atn = 0 mm2 0.0 Avg = 174000 mm2 222.8 Rr = 30017.09 kN 6748 Axial areas only Atg = 297500 mm2 461.1 Avg = 0 mm2 0.0 Atn = 243950 mm2 378.1 Avn = 0 mm2 0.0	3. Assume bottom flange thickness = 60 mm 4. Assume bottom flange thickness = 85 mm 5. Assume 8 diameter 63 mm 6. Assume 10 diameter 63 mm Transverse Atg = 297500 mm2 461.1 in2 Atg = 297500 mm2 269.7 in2 Atn = 243950 mm2 378.1 in2 Avn = 143760 mm2 222.8 in2 Rr = 115675.9 kN 26004 k Shear areas only Atg = 0 mm2 0.0 in2 Avg = 174000 mm2 269.7 in2 Atg = 0 mm2 0.0 in2 Avg = 174000 mm2 269.7 in2 Atg = 0 mm2 0.0 in2 Avg = 174000 mm2 269.7 in2 Atn = 0 mm2 0.0 in2 Avg = 174000 mm2 222.8 in2 Rr = 30017.09 kN 6748 k Axial areas only Atg = 297500 mm2 461.1 in2 Avg = 0 mm2 0.0 in2 Atn = 243950 mm2 378.1 in2 Avn = 0 mm2 0.0 in2	4. Assume bottom flange thickness = 85 mm 3.35 5. Assume 8 diameter 63 mm 2.48 6. Assume 10 diameter 63 mm 2.48 Transverse Axial and shear areas Atg = 297500 mm2 461.1 in2 Avg = 174000 mm2 269.7 in2 Atn = 243950 mm2 378.1 in2 Avn = 143760 mm2 222.8 in2 Rr = 115675.9 kN 26004 k D/C = Shear areas only Atg = 0 mm2 0.0 in2 Avg = 174000 mm2 269.7 in2 Atn = 0 mm2 0.0 in2 Avg = 174000 mm2 269.7 in2 Atn = 0 mm2 0.0 in2 Avn = 143760 mm2 222.8 in2 Rr = 30017.09 kN 6748 k D/C = Axial areas only Atg = 297500 mm2 461.1 in2 Avg = 0 mm2 0.0 in2 Atn = 243950 mm2 378.1 in2 Avn = 0 mm2 0.0 in2	3. Assume bottom flange thickness = 60 mm 2.36 in 4. Assume bottom flange thickness = 85 mm 3.35 in 5. Assume 8 diameter 63 mm 2.48 in 6. Assume 10 diameter 63 mm 2.48 in Transverse Axial and shear areas Atg = 297500 mm2 461.1 in2 Avg = 174000 mm2 269.7 in2 Atn = 243950 mm2 378.1 in2 Avn = 143760 mm2 222.8 in2 Rr = 115675.9 kN 26004 k D/C = 0.26 Shear areas only Atg = 0 mm2 0.0 in2 Avg = 174000 mm2 269.7 in2 Atn = 0 mm2 0.0 in2 Avg = 174000 mm2 222.8 in2 Rr = 30017.09 kN 6748 k D/C = 1.00 Axial areas only Atg = 297500 mm2 461.1 in2 Avg = 0 mm2 0.0 in2	3. Assume bottom flange thickness = 60 mm 2.36 in transverse 4. Assume bottom flange thickness = 85 mm 3.35 in longitudinal 5. Assume 8 diameter 63 mm 2.48 in holes transverse 6. Assume 10 diameter 63 mm 2.48 in holes transverse Axial and shear areas Atg = 297500 mm2 461.1 in2 Avg = 174000 mm2 269.7 in2 Atn = 243950 mm2 378.1 in2 Avn = 143760 mm2 222.8 in2 Rr = 115675.9 kN 26004 k D/C = 0.26 Ok Shear areas only Atg = 0 mm2 0.0 in2 Avn = 143760 mm2 269.7 in2 Atn = 0 mm2 0.0 in2 Avn = 143760 mm2 269.7 in2 Atn = 0 mm2 0.0 in2 Avn = 143760 mm2 222.8 in2 Rr = 30017.09 kN 6748 k D/C = 1.00 Ok Axial areas only Atg = 297500 mm2 461.1 in2 Avg = 0 mm2 0.0 in2 Avn = 0 mm2 0.0 in2 Atn = 243950 mm2 378.1 in2 Avn = 0 mm2 0.0 in2

Project: SFOBB - JN 3274 Subject: Girder capacity Content: Lateral and longitudinal loads

Longitudinal								
-	and sh	ear areas						
ŀ	Atg =	174000	mm2	269.7	in2			
A	vg =	297500	mm2	461.1	in2			
l l	Atn =	143760	mm2	222.8	in2			
Δ	vn =	243950	mm2	378.1	in2			
	Rr =	99377.4	kN	22340	k	D/C =	0.15	Ok
Shea	r areas	only						
ŀ	Atg =	0	mm2	0.0	in2			
A	vg =	297500	mm2	461.1	in2			
ŀ	Atn =	0	mm2	0.0	in2			
Δ	vn =	243950	mm2	378.1	in2			
	Rr =	50936.76	kN	11451	k	D/C =	0.29	Ok
Axial	areas	only						
ŀ	Atg =	174000	mm2	269.7	in2			
A	vg =	0	mm2	0.0	in2			
ŀ	Atn =	143760	mm2	222.8	in2			
A	vn =	0	mm2	0.0	in2			
	Rr =	51753.6	kN	11634	k	D/C =	0.29	Ok

Longitudinal shear plate

	Assume	60%	of longitu	of longitudinal shear is transferred into longitudinal shear plate (rest stays in bottom flange)						stays in bottom flange)
	Demand	MN 9	k 2025							
	Capacity	t =	18	mm	0.71	in				
		capacity = required =	3602 2499	N/mm mm	20.6 98.5	k/in in				
			Length	of bearing =	3500 137.8	mm in		D/C =	0.72	Ok
Transvers	e web plates									
	Demand	MN 30	k 6750							
	Capacity (3 v	webs)								

Bomana	00	0100							
Capacity (3 we	ebs)								
	t =	35	mm	1.38	in				
Shear ca Length re	pacity = quired =		N/mm mm	119.9 56.3	k/in in				
		Width	of bearing =	2900 114.2	mm in	D/C =	0.49	Ok	

Using very conservative assumptions, there is sufficient capacity to carry longitudinal and transverse shear loads up into the girder.

Project:	SFOBB - JN 3274
Subject:	Girder capacity
Content:	Lateral and longitudinal loads

PAR	7/24/2013
	PAR

Area of steel within bearing footprint

Webs (3) Width =	2900	mm	114.2	in
Thickness =	35	mm	1.38	in
Area (total) =	304500	mm2	472.0	in2
Shear plate				
Width =	3500	mm	137.8	in
Thickness =	18	mm	0.71	in
Area (total) =	63000	mm2	97.7	in2
Longitudinal stiffeners (,			
Width =	3500	mm	137.8	in
Thickness =	45	mm	1.77	in
Area (total) =	630000	mm2	976.5	in2
Transverse shear plate		(8)		
Width =	250	mm	9.8	in
Thickness =	25	mm	0.98	in
Area (total) =	50000	mm2	77.5	in2
Transverse plate stiffen	()			
Width =	550	mm	21.7	in
Thickness =	50	mm	1.97	in
Area (total) =	55000	mm2	85.3	in2
Transverse plate stiffen	ers B (2)			
Width =	475	mm	18.7	in
Thickness =	50	mm	1.97	in
Area (total) =	47500	mm2	73.6	in2
Typical bearing assemb	ly (14 pair	s)		
outer plates	(2)			
Width =	200	mm	7.9	in
Thickness =	35	mm	1.38	in
inner plate (7.0	•
Width =	200	mm	7.9	in
Thickness =	40	mm	1.57	in in O
Area (1) =	22000	mm2	34.1	in2
Area (total) =	616000	mm2	954.8	in2

Total plate bearing area above bottom flange within bearing footprint

Area (total) = 1766000 mm2 2737.3 in2

Prestressing force

!	56 50	diamete	r A354 Grade	BD ancho	or bolts			
/	Area =	1612.9	mm2	2.50	in2			
	Fu =	1034	MPa	150	ksi			
Cons	servativel	y assume	that bolts are	tensione	d to Fu			
Tension	/bolt =	1.67	MN/bolt	375	k/bolt			
Total f	orce =	93	MN	21000	k			
Cons	servativel	y assume	that force trar	nsferred t	hru stiffeners only			
St	ress =	151.7	MPa	21.99	ksi	D/C =	0.44	Ok
Forc	e through	stiffener	s webs and dia	aphragms	3			
St	ress =	81.2	MPa	11.8	ksi	D/C =	0.24	Ok

Project:	SFOBB - JN 3274	Ma
Subject:	Girder capacity	Check
Content:	Lateral and longitudinal loads	She

Made by:	PAR	7/24/2013
Checked by:		
Sheet No.:		

Axial reaction

Compression

Conservat Demand =	,	e that force ti kN MPa	ransferred 15289 26.84	thru shear ar k ksi	nd web plates only		
Tension							
Conservat	ively assum	e that bolt pre	etension is	0.6Fu			
Tension/bolt =	= 1.00	MN	225	k			
Total pretension =	56062	kN	12600	k			
Demand =	17000	kN	3822	k	D/C =	0.30	Ok
Pretensior	n is never ov	ercome - all	plates activ	e in tension			
	9.63	MPa	1.40	ksi			
Conservat	ively assum	e that force ti	ransferred	thru shear ar	nd web plates only		
	46.26	MPa	6.71	ksi	D/C =	0.13	Ok

Look at prestressing stiffener assembly

Material properties				
Steel plate				
Fy =	345	MPa	50	ksi
Fu =	450	MPa	65	ksi
Weld meta	al			
Fexx =	485	MPa	70	ksi
фе =	0.80			
Rexx =	232.8	MPa	33.6	ksi
50 diamete	er A354 Gra	ade BD anch	nor bolts	
Area =	= 1612.9	mm2	2.50	in2
Fu =	= 1034	MPa	150	ksi
Conservat	ively assum	ne load on e	ach bolt = Fu	l
Pu =	1.67	MN/bolt	375	k/bolt

Geometry

Top bearing	olate			
b =	200	mm	7.9	in
t =	100	mm	3.9	in
L =	200	mm	7.9	in
hole diameter =	63	mm	2.5	in
Center stiffer	ier			
b =	200	mm	7.9	in
t =	40	mm	1.6	in
L =	600	mm	23.6	in
tw =	35	mm	1.4	in
Outer stiffene	er			
b =	200	mm	7.9	in
t =	35	mm	1.4	in
L =	600	mm	23.6	in
tw =	35	mm	1.4	in

MODJESKI MASTERS Experience great bridges.	MODJESKIMASTERS Experience great bridges. Project: <u>SFOBB - JN 3274</u> Subject: <u>Girder capacity</u> Content: <u>Lateral and longitudinal loads</u>			Made by: PAR 7/24/201 Checked by:				
Bearing plate capacity								
Sxx (at hole) = 228333 My = 78775000 Assume elastic simply	N-mm	696.7	in3 k-in					
Mmax = 1/4 Pmax L Pmax = 1.58 Assume elastic continu	MN	354.5	k		D/C =	1.06	NG	
Mmax = 5/32 Pmax L Pmax = 2.52	MN		k		D/C =	0.66	Ok	
Reactions at stiffeners	(conservativ	vely use max	of continu	ious or simp	le support)			
Rcenter = 2.29 Router = 0.83	MN MN	515.7 187.5	k k					
Center stiffener capacity								
Compression - column Include 200mm of web	analogy							
Imin = A = r =		mm4 mm2 mm	61.2 35.7 1.31	in4 in2 in				
use k = kL/r =		for mill to b	ear ends					
sqrt(2 x π ² x E / Fy) = Fcr =		MPa	49.3	ksi				
Pmax =	2.72	MN	612	k	D/C =	0.84	Ok	
Shear D/t = 6000 sqrt(k) / sqrt(Fy) = C = \$\$ \$\$ Vr =	60.00 1.00 1.00	MN	1080	k	D/C =	0.48	Ok	
Check weld								
PJP = Weld strength =		mm MN	1.34 1068	in k	D/C =	0.48	Ok	
Outer stiffener capacity								
Compression - column Include 200mm of web	analogy							
Imin = A = r =		mm4 mm2 mm	59.5 32.6 1.35	in4 in2 in				
use k = kL/r =	1.00 17.47	for mill to b	ear ends					
sqrt(2 x π ² x E / Fy) = Fcr =		MPa	49.4	ksi				
Pmax =	2.38	MN	536	k	D/C =	0.35	Ok	

MODJESKI and MASTERS Experience great bridges.	Subject	Project: <u>SFOBB - JN 3274</u> Subject: <u>Girder capacity</u> Content: <u>Lateral and longitudinal loads</u>			Made by: <u>PAR 7/24/20</u> Checked by: Sheet No.:			7/24/2013
Shear D/t = 6000 sqrt(k) / sqrt(Fy) = C = \$	17.14 60.00 1.00 1.00 4.2	MN	945	k	D/C =	0.20	Ok	
Check weld PJP = Weld strength =	29.0 4.1	mm MN	1.14 911	in k	D/C =	0.21	Ok	
Check block shear tearout of webs Shear length = Axial length = t =	1200 400 35	mm mm mm	47.24 15.75 1.38	in in in				
Atn = Atg = Avn = Avg = φbs =	14000 42000 0.80	mm2 mm2	21.7 65.1	in2 in2				
Rr = Check shear of 50x700mm plates	12.6336	MN	3	k	D/C =	0.53	Ok	
Shear capacity Vr =	7.0	MN	1574	k	D/C =	0.95	Ok	
Weld capacity Vr =	7.2	MN	1612	k	D/C =	0.93	Ok	

Project: SFOBB - JN 3274 Subject: Girder capacity Content: Lateral and longitudinal loads

Made by:	PAR	7/24/2013
Checked by:		
Sheet No.:		

Area of steel within bearing footprint

Webs (3)							
Width =	2900	mm	114.2	in			
Thickness =	35	mm	1.38	in			
Area (total) =	304500	mm2	472.0	in2			
Shear plate							
Width =	3500	mm	137.8	in			
Thickness =	18	mm	0.71	in			
Area (total) =	63000	mm2	97.7	in2			
Longitudinal stiffeners (4)						
Width =	, 3500	mm	137.8	in			
Thickness =	45	mm	1.77	in			
Area (total) =	630000	mm2	976.5	in2			
,							
Transverse shear plate s	tiffeners (8)						
Width =	250	mm	9.8	in			
Thickness =	25	mm	0.98	in			
Area (total) =	50000	mm2	77.5	in2			
Transverse plate stiffene	rs A (2)						
Width =	550	mm	21.7	in			
Thickness =	50	mm	1.97	in			
Area (total) =	55000	mm2	85.3	in2			
,							
Transverse plate stiffene	rs B (2)						
Width =	475	mm	18.7	in			
Thickness =	50	mm	1.97	in			
Area (total) =	47500	mm2	73.6	in2			
Typical bearing assembly (14 pairs)							
outer plates (2)						
Width =	200	mm	7.9	in			
Thickness =	35	mm	1.38	in			

I hickness =	35	mm	1.38	ın
inner plate (1)			
Width =	200	mm	7.9	in
Thickness =	40	mm	1.57	in
Area (1) =	22000	mm2	34.1	in2
Area (total) =	616000	mm2	954.8	in2
Ixx =	754141666.7	mm4	1811.8	in4
lyy =	1124991667	mm4	2702.8	in4

Total plate bearing area above bottom flange within bearing footprint

Area (total) =	1766000	mm2	2737.3	in2

Project: SFOBB - JN 3274	Made by:	PAR	7/24/2013
Subject: Girder capacity	Checked by:		
Content: Lateral and longitudinal loads	Sheet No.:		

Moments of inertia assuming all plates active

Assume symmetry - not really correct

Shear plate Web 1 Web 2 Web 3 Longit stiff 1 Longit stiff 2 Longit stiff 3 Longit stiff 4 Transv shear plate stiff 1 Transv shear plate stiff 2 Transv shear plate stiff 3 Transv shear plate stiff 4 Transv plate stiff 1 Transv plate stiff 2 Transv plate stiff 3	Longit. mm4 64312500000 2.28385E+11 10361458.33 2.28385E+11 1.60781E+11 1.60781E+11 1.60781E+11 5348307292 1410807292 1440807292 1440807292 18957588542 18957588542 18957588542	Transv. mm4 1701000 71134583333 71134583333 71134583333 1.27602E+11 39401578125 39401578125 1.27602E+11 260416666.7 260416666.7 260416666.7 37460880534 37460880534 37460880534	Longit. in4 154511.3993 548698.0257 24.89350322 548698.0257 386278.4982 386278.4982 386278.4982 12849.35967 3389.478076 3389.478076 12849.35967 45545.78865 45545.78865	Transv. in4 4.086668847 170901.5201 170901.5201 306564.0177 94662.6701 94662.6701 306564.0177 625.6535443 625.6535443 625.6535443 90000.12548 90000.12548

Loadings

			Arm =	750	mm
	VT (MN)	VL (MN)	P (MN)	MT (MN-mm)	ML (MN-mm)
U	25.3	1.6	-9.5	18975	1200
Т	30.5	8.2	16.4	22875	6150
L	1.3	13.2	19.3	975	9900
С	30	15	68	22500	11250
Max/Min Stress P/A	A + Mx/Sx + My/Sy				
	Max (MPa)	Min (MPa)	Max (ksi)	Min (ksi)	
U	34.37	-45.13	4.98	-6.54	
Т	61.98	-43.40	8.99	-6.29	
L	22.95	-1.09	3.33	-0.16	
С	95.61	-18.60	13.86	-2.70	

Add prestressing force Conservatively assume that force transferred thru stiffeners only Stress = 151.68 MPa 21.99 ksi

	Max (MPa)	Min (MPa)	Max (ksi)	Min (ksi)	D/C	
U	186.05	106.56	26.98	15.45	0.54	Ok
Т	213.66	108.28	30.98	15.70	0.62	Ok
L	174.63	150.59	25.32	21.84	0.51	Ok
С	247.29	133.09	35.86	19.30	0.72	Ok

Project: SFOBB - JN 3274 Subject: Girder capacity Content: Lateral and longitudinal loads

Made by:	PAR	7/24/2013
Checked by:		
Sheet No .:		

Area of steel within bearing footprint

Webs (3)							
Width =	2900	mm	114.2	in			
Thickness =	35	mm	1.38	in			
Area (total) =	304500	mm2	472.0	in2			
()							
Shear plate							
Width =	3500	mm	137.8	in			
Thickness =	18	mm	0.71	in			
Area (total) =	63000	mm2	97.7	in2			
Longitudinal stiffeners (4)						
Width =	, 3500	mm	137.8	in			
Thickness =	45	mm	1.77	in			
Area (total) =	630000	mm2	976.5	in2			
, , , , , , , , , , , , , , , , , , ,							
Transverse shear plate s	tiffeners (8)						
Width =	250	mm	9.8	in			
Thickness =	25	mm	0.98	in			
Area (total) =	50000	mm2	77.5	in2			
Transverse plate stiffene	rs A (2)						
Width =	550	mm	21.7	in			
Thickness =	50	mm	1.97	in			
Area (total) =	55000	mm2	85.3	in2			
()							
Transverse plate stiffene	rs B (2)						
Width =	475	mm	18.7	in			
Thickness =	50	mm	1.97	in			
Area (total) =	47500	mm2	73.6	in2			
Typical bearing assembly (14 pairs)							
outer plates (2)						
Width =	200	mm	7.9	in			
Thickness =	35	mm	1.38	in			
inner plate (1)						

inner plate (1)				
Width =	200	mm		7.9	in
Thickness =	40	mm		1.57	in
Area (1) =	22000	mm2		34.1	in2
Area (total) =	616000	mm2	ç	954.8	in2
lxx =	754141666.7	mm4	1	811.8	in4
lyy =	1124991667	mm4	2	702.8	in4

Total plate bearing area above bottom flange within bearing footprint

Area (total) =	1766000	mm2	2737.3	in2
Area (total) =	1766000	mm2	2737.3	in2

Project:	SFOBB - JN 3274
Subject:	Girder capacity
Content:	Lateral and longitudinal loads

Made by: <u>PAR 7/24/2013</u> Checked by: _____ Sheet No.:

Moments of inertia assuming all plates active

Assume symmetry - not really correct

Shear plate Web 1 Web 2 Web 3 Longit stiff 1 Longit stiff 2 Longit stiff 3 Longit stiff 4 Transv shear plate stiff 1 Transv shear plate stiff 3 Transv shear plate stiff 4 Transv plate stiff 4 Transv plate stiff 3 Transv plate stiff 3 Transv plate stiff 3 Transv plate stiff 4 Bearing assemblies	2.28385E+11 10361458.33 2.28385E+11	Transv. mm4 1701000 71134583333 71134583333 71134583333	Longit. in4 154511.3993 548698.0257 24.89350322 548698.0257	Transv. in4 4.086668847 170901.5201 170901.5201 170901.5201	
Total moment of inertia =		2.13405E+11	1251932.344	512708.6469	
	Longit. mm3	Transv. mm3	Longit. in3	Transv. in3	
Section modulus =	297767763	147176173	715.4	353.6	
Loadings			Arm =	750	mm
	VT (MN)	VL (MN)	P (MN)	MT (MN-mm)	ML (MN-mm)
U	25.3	1.6	-9.5	18975	1200
Т	30.5	8.2	16.4	22875	6150
L	1.3	13.2	19.3	975	9900
С	30	15	68	22500	11250
Max/Min Stress P/A + I	Mx/Sx + My/Sy				

	Max (MPa)	Min (MPa)	Max (ksi)	Min (ksi)		
U	127.58	-138.34	18.50	-20.06		
Т	185.37	-166.79	26.88	-24.19		
L	50.80	-28.94	7.37	-4.20		
С	229.16	-152.15	33.23	-22.06		

Add prestressing force

Force through	stiffeners	webs and diaphragms	
Stress =	81.25	MPa	11.78

	Max (MPa)	Min (MPa)	Max (ksi)	Min (ksi)	D/C	
U	208.83	-57.09	30.28	-8.28	0.61	Ok
Т	266.62	-85.54	38.66	-12.40	0.77	Ok
L	132.05	52.31	19.15	7.58	0.38	Ok
С	310.41	-70.90	45.01	-10.28	0.90	Ok

ksi

Project: SFOBB - JN 3274 Subject: Girder capacity Content: Lateral and longitudinal loads Made by: <u>PAR 7/24/2013</u> Checked by:

Sheet No.:

Prestressing force

56 5	0 diamet	er A354 Grad	e BD anc	hor bolts	
Area =	1612.9	mm2	2.50	in2	
Fu =	1034	MPa	150	ksi	
Assume that		0.68	Fu		
Tension/bolt =	1.13	MN/bolt	253	k/bolt	
Total force =	63	MN	14175	k	
Friction coefficient, μ , steel to steel - assume class B surface					
μ =	0.5			Table 6.1	3.2.8-3

Lateral capacity at interface

- With no other loads present

	Ρ = μ x P =	63 31.5	MN MN	14175 7088	
- With uplift of		13.3	MN	2989.84	k
	Ρ= μ x Ρ=	50 24.9	MN MN	11185 5593	

Demand

	VT (MN)	VL (MN)	P (MN)	Vtotal (MN)	Capacity	D/C	
U	25.3	1.6	-9.5	25.4	26.8	0.95	Ok
т	30.5	8.2	16.4	31.6	39.7	0.79	Ok
L	1.3	13.2	19.3	13.3	41.2	0.32	Ok
All maximu	ms concurre	ent					
	30.5	13.2	-9.5	31.6	26.8	1.18	NG
Design demands							
С	30	15	-17	33.5	23.0	1.46	NG

Project: SFOBB - JN 3274	Made
Subject: Crossbeam capacity	Checked
Content: Lateral loads	Sheet N

de by:	PAR	7/24/2013
ed by:		
et No.:		

Assumptions:

- 1. Look at it from a "block shear" perspective.
- Local effects only assumed that load spreads quickly away from bearing.
 A709M Grade 345 (A709 Grade 50) steel.

	Fy =	= 345	MPa	50	ksi	
	Fu =	= 450	MPa	65	ksi	
Shear Key Demand						
	MN	k				
Compressio	on O	0				
Upl	ift O	0				
Longitudin	al 0	0				
Transvers	se 60	13500				
Shear Key "footprint"						
	Length, L =	= 3600	mm	141.7	in	
	Width, w =	= 3400	mm	133.9	in	
Key plate "footprint"						
	Length, L =	= 4400	mm	173.2	in	
	Width, w =	= 4200	mm	165.4	in	

Block Shear

If Atn <u><</u> 0.58 Avn then		Rr = \phi bs (0.58 Fy Avg + Fu Atn)	6.13.4-1
otherwise		Rr = \phi bs (0.58 Fu Avn + Fy Atg)	6.14.4-2
φbs =	0.80		6.5.4.2

Case 1 - Looking at bottom flange from the most conservative perspective

 Ignore presence of t Use minimum of key Assume bottom flan Assume key plate th Assume Assume 	y plate - ho ge thickne:	les or bottom	0	•	1.38 2.95 3.94 3.94	in in in		longitudinal holes transverse holes longitudinal
Transverse								
Axial and sl	hear areas							
Atg =	308000	mm2	477.4	in2				
Avg =	294000	mm2	455.7	in2				
Atn =	308000	mm2	477.4	in2				
Avn =	294000	mm2	455.7	in2				
Rr =	157943.5	kN	35506	k	D/C =	=	0.38	Ok
Shear areas	s only							
Atg =	0	mm2	0.0	in2				
Avg =	294000	mm2	455.7	in2				
Atn =	0	mm2	0.0	in2				
Avn =	294000	mm2	455.7	in2				
Rr =	61387.2	kN	13800	k	D/C =	=	0.98	Ok

	Project:	SFOBB -	JN 3274			Made by:	PAR	7/24/2013
	Subject:	Crossbea	m capacity			Checked by:		
MODJESKI and MASTERS Experience great bridges.	Content:	Lateral loa	ads			Sheet No.:		
Axial areas only								
Atg = 308000		477.4	in2					
Avg = 0	mm2	0.0	in2					
Atn = 308000		477.4	in2					
Avn = 0	mm2	0.0	in2					
Rr = 110880	kN	24926	k	D/C =	0.54	Ok		
Longitudinal								
Axial and shear areas								
Atg = 294000	mm2	455.7	in2					
Avg = 308000	mm2	477.4	in2					
Atn = 294000		455.7	in2					
Avn = 308000	mm2	477.4	in2					
Rr = 155144.6	kN	34877	k	D/C =	0.00	Ok		
Shear areas only								
Atg = 0	mm2	0.0	in2					
Avg = 308000	mm2	477.4	in2					
Atn = 0	mm2	0.0	in2					
Avn = 308000	mm2	477.4	in2					
Rr = 64310.4	kN	14457	k	D/C =	0.00	Ok		
Axial areas only								
Atg = 294000	mm2	455.7	in2					
Avg = 0	mm2	0.0	in2					
Atn = 294000	mm2	455.7	in2					
Avn = 0	mm2	0.0	in2					
Rr = 105840	kN	23793	k	D/C =	0.00	Ok		
ansverse web plates								

Transverse web plates

Demand	MN 60	k 13500						
Capacity (or	nly consider		webs)					
	t =	40	mm	1.57	in			
Shear	capacity =	24012	N/mm	137.0	k/in			
Length	required =	2499	mm	98.5	in			
		Width	of bearing =	3400 133.9	mm in	D/C =	0.74	Ok

Using conservative assumptions, there is sufficient capacity to carry transverse shear loads up into the girder.

Project:	SFOBB - JN 3274
Subject:	Crossbeam capacity
Content:	Lateral loads at shear keys

Made by:	PAR	7/24/2013
viaue by.	ГАЛ	1/24/2013

Checked by: ______ Sheet No.: _____

Area of steel within shear key footprint

Webs (3)				
. ,	3400	mm	133.9	in
Thickness =	40	mm	1.57	in
Area (total) = 40	08000	mm2	632.4	in2
Longitudinal stiffener				
•	3600	mm	141.7	in
Thickness =	50	mm	1.97	in
Area (total) = 18	30000	mm2	279.0	in2
La sulta da la la sulta da successo (O				
Longitudinal diaphragms (2 Width = 3	:) 3600	mm	141.7	in
Thickness =	50	mm	1.97	in
	20000	mm2	1116.0	in2
Bearing assembly 1 (4)				
outer plates (2)				
Width =	300	mm	11.8	in
Thickness =	35	mm	1.38	in
inner plate (1)				
	300	mm	11.8	in
Thickness =	50	mm	1.97	in
()	6000	mm2	55.8	in2
Area (total) = 14	14000	mm2	223.2	in2
Bearing assembly 2 (4 pairs	s)			
outer plates (2)	s)			
outer plates (2) Width =	300	mm	11.8	in
outer plates (2) Width = Thickness =		mm mm	11.8 1.38	in in
outer plates (2) Width = Thickness = inner plates (2)	300 35	mm	1.38	in
outer plates (2) Width = Thickness = inner plates (2) Width =	300 35 300	mm mm	1.38 11.8	in in
outer plates (2) Width = Thickness = inner plates (2) Width = Thickness =	300 35 300 40	mm mm mm	1.38 11.8 1.57	in in in
outer plates (2) Width = Thickness = inner plates (2) Width = Thickness = Area (1) = 4	300 35 300 40 5000	mm mm mm2	1.38 11.8 1.57 69.8	in in in2
outer plates (2) Width = Thickness = inner plates (2) Width = Thickness = Area (1) = 4	300 35 300 40	mm mm mm	1.38 11.8 1.57	in in in
outer plates (2) Width = Thickness = inner plates (2) Width = Thickness = Area (1) = 4	300 35 300 40 5000 5000	mm mm mm2	1.38 11.8 1.57 69.8	in in in2
outer plates (2) Width = Thickness = inner plates (2) Width = Thickness = Area (1) = 44 Area (total) = 36	300 35 300 40 5000 5000	mm mm mm2	1.38 11.8 1.57 69.8	in in in2
outer plates (2) Width = 3 Thickness = inner plates (2) Width = 3 Thickness = Area (1) = 4 Area (total) = 36 Bearing assembly 3 (2 pairs outer plates (2)	300 35 300 40 5000 5000	mm mm mm2	1.38 11.8 1.57 69.8 558.0	in in in2
outer plates (2) Width = 3 Thickness = inner plates (2) Width = 3 Thickness = Area (1) = 4 Area (total) = 36 Bearing assembly 3 (2 pairs outer plates (2) Width = 3 Thickness =	300 35 300 40 5000 5000 50000 s)	mm mm mm2 mm2	1.38 11.8 1.57 69.8 558.0	in in in2 in2
outer plates (2) Width = 3 Thickness = inner plates (2) Width = 3 Thickness = Area (1) = 4 Area (total) = 36 Bearing assembly 3 (2 pairs outer plates (2) Width = 3 Thickness = inner plates (2)	300 35 300 40 5000 5000 50000 s) 300 35	mm mm mm2 mm2 mm	1.38 11.8 1.57 69.8 558.0 11.8 1.38	in in in2 in2 in
outer plates (2) Width = 3 Thickness = inner plates (2) Width = 3 Thickness = Area (1) = 4 Area (total) = 36 Bearing assembly 3 (2 pairs outer plates (2) Width = 3 Thickness = inner plates (2) Width = 3	300 35 300 40 5000 50000 50000 s) 300 35 300	mm mm mm2 mm2 mm mm	1.38 11.8 1.57 69.8 558.0 11.8 1.38 11.8	in in in2 in2 in in
outer plates (2) Width = 3 Thickness = inner plates (2) Width = 3 Thickness = Area (1) = 44 Area (total) = 36 Bearing assembly 3 (2 pairs outer plates (2) Width = 3 Thickness = inner plates (2) Width = 3 Thickness =	300 35 300 40 5000 5000 50000 s) 300 35	mm mm mm2 mm2 mm	1.38 11.8 1.57 69.8 558.0 11.8 1.38	in in in2 in2 in
outer plates (2) Width = Thickness = inner plates (2) Width = Thickness = Area (1) = 4 Area (total) = 36 Bearing assembly 3 (2 pairs outer plates (2) Width = Thickness = inner plates (2) Width = Thickness = center plate (1)	300 35 300 40 5000 50000 50000 s) 300 35 300 40	mm mm mm2 mm2 mm mm mm	1.38 11.8 1.57 69.8 558.0 11.8 1.38 1.57	in in in2 in2 in in in in
outer plates (2) Width = Thickness = inner plates (2) Width = Thickness = Area (1) = 4! Area (total) = 36 Bearing assembly 3 (2 pairs outer plates (2) Width = Thickness = inner plates (2) Width = Thickness = center plate (1) Width =	300 35 300 40 5000 50000 50000 s) 300 35 300 40 300	mm mm mm2 mm2 mm mm mm mm	1.38 11.8 1.57 69.8 558.0 11.8 1.38 1.57 11.8	in in in2 in2 in in in in
outer plates (2) Width = : Thickness = inner plates (2) Width = : Thickness = Area (1) = 4! Area (total) = 36 Bearing assembly 3 (2 pairs outer plates (2) Width = : Thickness = inner plates (2) Width = : Thickness = center plate (1) Width = : Thickness =	300 35 300 40 5000 50000 50000 s) 300 35 300 40	mm mm mm2 mm2 mm mm mm	1.38 11.8 1.57 69.8 558.0 11.8 1.38 1.57	in in in2 in2 in in in in
outer plates (2) Width = : Thickness = inner plates (2) Width = : Thickness = Area (1) = 4! Area (total) = 36 Bearing assembly 3 (2 pairs outer plates (2) Width = : Thickness = inner plates (2) Width = : Thickness = center plate (1) Width = : Thickness = Area (1) = 6	300 35 300 40 5000 50000 s) 300 35 300 40 300 50	mm mm mm2 mm2 mm mm mm mm mm	1.38 11.8 1.57 69.8 558.0 11.8 1.38 1.57 11.8 1.97	in in in2 in2 in in in in in

Total plate bearing area above bottom flange within shear key footprint

Area (total) = 2052000 mm2 3181 in2

IODJESKI - MASTERS	

Project: SFOBB - JN 3274 Subject: Crossbeam capacity Content: Lateral loads at shear keys Made by: <u>PAR 7/24/2013</u> Checked by: <u>Sheet No.:</u>

Prestressing force (stiffened bolts)

48 7	6 diamete	er A354 Grad	le BD anch	nor bolts			
Area =	3851.6	mm2	5.97	in2			
Fu =	966	MPa	140	ksi			
Conservative	ly assum	e that bolts a	re tension	ed to Fu			
Tension/bolt =	3.72	MN/bolt	836	k/bolt			
Total force =	179	MN	40118	k			
Conservative	ly assum	e that force t	ransferred	thru stiffeners only			
Stress =	239.9	MPa	34.8	ksi	D/C =	0.70	Ok
Force throug	h stiffene	rs webs and	diaphragm	IS			
Stress =	95.4	MPa	13.8	ksi	D/C =	0.20	Ok

Look at prestressing stiffener assembly

Material properties				
Steel plate				
Fy =	345	MPa	50	ksi
Fu =	450	MPa	65	ksi
Weld meta	al			
Fexx =	485	MPa	70	ksi
φe =	0.80			
Rexx =	232.8	MPa	33.6	ksi
50 diamete	er A354 Grad	de BD anc	hor bolts	
Area =	3851.6	mm2	5.97	in2
Fu =	966	MPa	140	ksi
Conservati	ively assume	e load on e	each bolt = 0.	8Fu
Pu =	2.98	MN/bolt	668.64	k/bolt

Geometry

Top bearing	plate			
b =	300	mm	11.8	in
t =	200	mm	7.9	in
L =	400	mm	15.7	in
hole diameter =	100	mm	3.9	in
Center stiffer	ner			
b =	300	mm	11.8	in
t =	50	mm	2.0	in
L =	600	mm	23.6	in
tw =	40	mm	1.6	in
Interior stiffe	ner			
				in
b =	300	mm	11.8	in
b = t =	300 50	mm mm	11.8 2.0	in
			-	
t =	50	mm	2.0	in
t = L =	50 600 40	mm mm	2.0 23.6	in in
t = L = tw =	50 600 40	mm mm	2.0 23.6	in in
t = L = tw = Outer stiffend	50 600 40 er	mm mm mm	2.0 23.6 1.6	in in in
t = L = tw = Outer stiffend b =	50 600 40 er 300	mm mm mm	2.0 23.6 1.6 11.8	in in in

MODJESKI and MASTERS Experience great bridges.	Subject:	SFOBB - J Crossbean Lateral loa		keys	Che	-		7/24/2013
Bearing plate capacity								
Look at shear between I = 20000000 Q = 1500000 t = 90 Vmax = 2.23 VQ/It = 185.94 D/C <= 1.00 - therefore	mm4 mm3 mm MN MPa	480.5 91.5 3.54 501.5 26.96	in4 in4 k ksi lates act as	single unit	D/C =	0.80		
Sxx (at hole) = 1333333 My = 46000000 Assume elastic simply Mmax = 1/4 Pmax L Pmax = 4.60	N-mm supported b MN	1035.0	e k		D/C =	0.65	Ok	
Reactions at stiffeners Rcenter = 4.09 Router = 1.49	(conservativ MN MN	vely use ma 919.6 334.4	x of continu k k	ous or simple su	ipport)			
Center stiffener capacity								
Compression - column Include 200mm of web	analogy							
Imin = A = r =		mm4 mm2 mm	79.1 58.9 1.16	in4 in2 in				
use k = kL/r =		for mill to b	ear ends					
sqrt(2 x π ² x E / Fy) = Fcr =		MPa	49.1	ksi				
Pmax =	5.08	MN	1142	k	D/C =	0.81	Ok	
Shear D/t = 6000 sqrt(k) / sqrt(Fy) = C = φs = Vr =	60.00 1.00 1.00	MN	1349	k	D/C =	0.68	Ok	
Check weld								
PJP = Weld strength =		mm MN	1.26 1005	in k	D/C =	0.92	Ok	
Outer stiffener capacity								
Compression - column Include 200mm of web	analogy							
Imin = A = r =		mm4 mm2 mm	69.2 45.0 1.24	in4 in2 in				
use k = kL/r =		for mill to b	ear ends					

	Project	SFOBB	- JN 3274			Made by	/: <u>PAR 7/24/2013</u>		
	Subject	: Crossbe	am capacity		c	Checked by:			
MODJESKI and MASTERS Experience great bridges.			oads at shear	keys		Sheet No			
					_				
	407.0								
sqrt(2 x π^2 x E / Fy) =	107.0	MDe	40.0	kai					
Fcr =	339.5	MPa	49.2	ksi					
Pmax =	3.57	MN	801	k	D/C =	0.42	Ok		
Shear									
D/t =	17.14								
6000 sqrt(k) / sqrt(Fy) =	60.00								
C =	1.00								
φs =	1.00								
Vr =	4.2	MN	945	k	D/C =	0.35	Ok		
Check weld									
PJP =	29.0	mm	1.14	in					
Weld strength =	4.1	MN	911	k	D/C =	0.37	Ok		
Check block shear tearout of diaphr	agms								
Shear length =	1200	mm	47.24	in					
Axial length =	1100	mm	43.31	in					
t =	50	mm	1.97	in					
			-						
Atn = Atg =	55000	mm2	85.3	in2					
Avn = Avg =	60000	mm2	93.0	in2					
φbs =	0.80								
Rr =	29.4	MN	6.6	k	D/C =	0.76	Ok		
Check block shear tearout of webs									
Shear length =	1800	mm	70.87	in					
Axial length =	1220	mm	48.03	in					
teff =	43.3	mm	1.71	in					
Atn = Atg =	52867	mm2	81.9	in2					
Avn = Avg =	78000	mm2	120.9	in2					
φbs =	0.80								
Rr =	31.5	MN	7.1	k	D/C =	0.94	Ok		

Project: SFOBB - JN 3274 Subject: Crossbeam capacity Content: Lateral loads at shear keys

Made by:	PAR	7/24/2013
Checked by:		
Sheet No.:		

Area of steel within bearing footprint

Webs (3)				
Width =	3400	mm	133.9	in
Thickness =	40	mm	1.57	in
Area (total) =	408000	mm2	632.4	in2
Diaphragms (2)				
Width =	3600	mm	141.7	in
Thickness =	50	mm	1.97	in
Area (total) =	540000	mm2	837.0	in2

Total plate bearing area above bottom flange within bearing footprint

Area (total) =	948000	mm2	632.4	in2

Moments of inertia assuming all plates active

Assume symmetry

	Transv. mm4	Transv. in4
Web 1	1.31013E+11	314760.7924
Web 2	0	0
Web 3	1.31013E+11	314760.7924
Diaphragm 1	3.52838E+11	847695.4845
Diaphragm 2	3.52838E+11	847695.4845
Total moment of inertia =	0 67702E 11	2324912.554
Total moment of inertia =		
	Transv. mm3	Transv. in3
Section modulus =	691215476	42180.6

Loadings

Transverse Demand =	42	MN
Arm =	750	mm
Moment =	31500	MN-mm

Max/Min Stress = My/Sy

	Max (MPa)	Min (MPa)	Max (ksi)	Min (ksi)
Normal Stress	45.57	-45.57	6.61	-6.61

Add prestressing force

•	Force throu	gh stiffeners w	ebs and diaphra	gms			
	Stress =	95.35	MPa	13.83	ksi		
		Max (MPa)	Min (MPa)	Max (ksi)	Min (ksi)	D/C	
	т	140.93	49.78	20.43	7.22	0.41	Ok

_	MODJESKI and MASTERS Experience great bridges.

Project: <u>SFOBB - JN 3274</u> Subject: <u>Crossbeam capacity</u> Content: <u>Lateral loads at shear keys</u>

Prestressing force

80 7	'6 diamet	er A354 Grac	le BD anc	hor bolts	
Area =	3852	mm2	5.97	in2	
Fu =	966	MPa	140	ksi	
Assume that	bolts are	e tensioned to)	0.68	Fu
Tension/bolt =	2.510	MN/bolt	564	k/bolt	
Total force =	201	MN	45133	k	
Friction coefficient, μ , steel to steel - assume class B surface $\mu = 0.5$ Table 6.13.2.8-3					3.2.8-3

Lateral capacity at interface

 No other axial loads present 	
--	--

	P =	201	MN	45133	k			
Shear capacity								
μ	x P =	100	MN	22567	k	D/C =	0.60	Ok

Project:	SFOBB - JN 3274	
Subject:	Crossbeam capacity	
Content:	Cable load	

Made by:	PAR	7/24/2013
Checked by:		
Sheet No .:		

Cross Beam Estimated Section Properties

Top flange			
Width =	10000	mm	393.7
Thickness =	20	mm	0.8
Stiffeners			
Number =	20		
Width =	205	mm	8.1
Thickness =	22	mm	0.9
"Effective" top flange			
Width =	10000	mm	393.7
Thickness =	29.02	mm	1.1
Outer webs			
Width =	5500	mm	216.5
Thickness =	20	mm	0.8
Stiffeners			
Number =	13		
Width =	205	mm	8.1
Thickness =	22	mm	0.9
"Effective" outer web			
Width =	5500	mm	216.5
Thickness =	30.66	mm	
Inner webs1			
Width1 =	3275	mm	128.9
Thickness1 =	20	mm	0.8
Stiffeners1			
Number =	7		
Width =	205	mm	8.1
Thickness =	22	mm	0.9
Width2 =	2225	mm	87.6
Thickness2 =	40	mm	1.6
Stiffeners2			
Number =	4		
Width =	200	mm	7.9
Thickness =	40	mm	1.6
"Effective" inner web1			
			128.9
Width1 =	3275	mm	120.9
	3275 29.64	mm	1.2
Width1 =			

Project: SFOBB - JN 3274 Subject: Crossbeam capacity Content: Cable load

Inner webs2	2275		120.0	•
Width1 =	3275	mm	128.9	in
Thickness1 =	20	mm	0.8	in
Stiffeners1	-			
Number =	7			
Width =	205	mm	8.1	in
Thickness =	22	mm	0.9	in
Width2 =	2225	mm	87.6	in
Thickness2 =	40	mm	1.6	in
Stiffeners2	_			
Number =	5			
Width =	200	mm	7.9	in
Thickness =	40	mm	1.6	in
"Effective" inner web2				
Width1 =	3275	mm	128.9	in
Thickness1 =	29.64	mm	1.2	in
Width2 =	2225	mm	87.6	in
Thickness2 =	57.98	mm	2.3	in
Bottom flange				
Width1 =	3000	mm	118.1	in
Thickness1 =	35	mm	1.4	in
Stiffeners1	55		1.4	
Number =	7			
Width =	, 310	mm	12.2	in
Thickness =	35		1.4	in
Width2 =	4000	mm	1.4	in
Thickness2 =	4000 35	mm	1.4	in
Width3 =		mm	1.4	
	3000	mm	-	in in
Thickness3 =	35	mm	1.4	in
Stiffeners 3 Number =	7			
	7		12.2	•
Width =	310	mm	12.2	in
Thickness =	35	mm	1.4	in
"Effective" bottom flan	0		110.4	
Width1 =	3000	mm	118.1	in
Thickness1 =	60.3	mm	2.4	in
Width2 =	4000	mm	157.5	in
Thickness2 =	35.0	mm	1.4	in
Width3 =	3000	mm	118.1	in
Thickness3 =	60.3	mm	2.4	in
Area =	1791570	mm2	2776.9	in2
NAxx (from top) =	3236	mm	127.4	in
NAyy (from center) =	0	mm	0.0	in
lxx =	8.19082E+12	mm4	19678521	in4
Sxtop =	2531494140	mm3	154481.3	in3
Sxbot =	3617160932	mm3	220732.7	in3
	1.55463E+13		37350231	
Sy =	777317000	mm3	47434.79	
- 1				-

MODJESKI and MASTERS Experience great bridges.	Subjec	t: <u>SFOBB - JI</u> t: <u>Crossbeam</u> t: <u>Cable load</u>			Made by: <u>PAR 7/24/2013</u> Checked by: Sheet No.:
Cable geometry (from Suspension	Cable Layout	: No. 3)			
WP1	WPA	EP1	EPA		
X 393	35852	393	34114		
Y 36045	29461	-36025	-29939		
Z 266	-3106	-1176	-4339		
Angle in XY plane West	0.18359 10.519	East	0.17856 10.231	radians degrees	
Angle in XZ plane West	0.09481 5.432	East	0.09353 5.359	radians degrees	
Estimated max cable force					
Fa =	689	MPa	100	ksi	(From General Notes No. 1)
net area =	0.39848	m2	617.6	in2	(From Suspension Cable Layout No. 1)
Pmax =	275	MN	61719	k	
Estimated forces in crossbeam at P	ier E2				
X =	50.1	MN	11267	k	
ex =	500	mm	20	in	
Y =	4.6	MN	1033	k	
ey =	10785	mm	425	in	
Z =	0.4	MN	98	k	
ez =	2986	mm	118	in	
Mx = X ez + Z ey =	154353.5	MN-mm	113841	k-ft	
My = Y ex =	2296.6	MN-mm	1694	k-ft	
P/A + Mx/Sx + My/Sy =	73.6	MPa	10.67	ksi	
Seismic shear force					
Peq =	120.0	MN	26976	k	
ez =	3014.4	mm	118.7	in	
P/A + Mx/Sx =	67.8	MPa	9.83	ksi	
Total stress =	141.4	MPa	20.51	ksi	D/C = 0.41 Ok

Project:	SFOBB - JN 3274	
Subject:	Crossbeam capacity	
Content:	Cable load	

Made by:	PAR	7/24/2013
Checked by:		
Sheet No.:		

Cross Beam Estimated Section Properties

Top flange				
Width =	4000	mm	157.5	in
Thickness =	20	mm	0.8	in
Stiffeners				
Number =	6			
Width =	205	mm	8.1	ir
Thickness =	22	mm	0.9	ir
"Effective" top flange				
Width =	4000	mm	157.5	ir
Thickness =	26.765	mm	1.1	ir
Outer webs				
Width =	5500	mm	216.5	ir
Thickness =	0	mm	0.0	ir
Stiffeners				
Number =	0			
Width =	205	mm	8.1	ir
Thickness =	22	mm	0.9	ir
"Effective" outer web				
Width =	5500	mm	216.5	ir
Thickness =	0	mm		
Inner webs1				
Width1 =	3275	mm	128.9	ir
Thickness1 =	20	mm	0.8	ir
Stiffeners1				
Number =	7			
Width =	205	mm	8.1	ir
Thickness =	22	mm	0.9	ir
Width2 =	2225	mm	87.6	ir
Thickness2 =	40	mm	1.6	ir
Stiffeners2				
Number =	4			
Width =	200	mm	7.9	ir
Thickness =	40	mm	1.6	ir
"Effective" inner web1				
Width1 =	3275	mm	128.9	ir
Thickness1 =	29.64	mm	1.2	ir
Width2 =	2225	mm	87.6	ir
Thickness2 =	54.38	mm	2.1	ir

Project: SFOBB - JN 3274 Subject: Crossbeam capacity Content: Cable load

Inner webs2				
Width1 =	3275	mm	128.9	in
Thickness1 =	20	mm	0.8	in
Stiffeners1				
Number =	7			
Width =	205	mm	8.1	in
Thickness =	22	mm	0.9	in
Width2 =	2225	mm	87.6	in
Thickness2 =	40	mm	1.6	in
Stiffeners2				
Number =	5			
Width =	200	mm	7.9	in
Thickness =	40	mm	1.6	in
"Effective" inner web2				
Width1 =	3275	mm	128.9	in
Thickness1 =	29.64	mm	1.2	in
Width2 =	2225	mm	87.6	in
Thickness2 =	57.98	mm	2.3	in
Bottom flange				
Width1 =	3000	mm	118.1	in
Thickness1 =	0	mm	0.0	in
Stiffeners1				
Number =	0			
Width =	310	mm	12.2	in
Thickness =	35	mm	1.4	in
Width2 =	4000	mm	157.5	in
Thickness2 =	35	mm	1.4	in
Width3 =	3000	mm	118.1	in
Thickness3 =	0	mm	0.0	in
Stiffeners 3				
Number =	0			
Width =	310	mm	12.2	in
Thickness =	35	mm	1.4	in
"Effective" bottom flan	ge			
Width1 =	3000	mm	118.1	in
Thickness1 =	0.0	mm	0.0	in
Width2 =	4000	mm	157.5	in
Thickness2 =	35.0	mm	1.4	in
Width3 =	3000	mm	118.1	in
Thickness3 =	0.0	mm	0.0	in
Area =	909270	mm2	1409.4	in2
NAxx (from top) =	3163	mm	124.5	in
NAyy (from center) =	0	mm	0.0	in
Ixx =	3.48304E+12		8368031	
Sxtop =	1101169898		67197.51	
Sxbot =	1490409752		90950.38	
lyy =	1.31073E+12		3149037	
Sy =	163841041.7	mm3	9998.194	in3

MODJESKI and MASTERS Experience great bridges.	Subjec	t: <u>SFOBB - JI</u> t: <u>Crossbeam</u> t: <u>Cable load</u>			Made by: <u>PAR 7/24/2013</u> Checked by: Sheet No.:
Cable geometry (from Suspension	Cable Layout	No. 3)			
WP1	WPA	EP1	EPA		
X 393	35852	393	34114		
Y 36045	29461	-36025	-29939		
Z 266	-3106	-1176	-4339		
Angle in XY plane West	0.18359 10.519	East	0.17856 10.231	radians degrees	
Angle in XZ plane West	0.09481 5.432	East	0.09353 5.359	radians degrees	
Estimated max cable force					
Fa =	689	MPa	100	ksi	(From General Notes No. 1)
net area =	0.39848	m2	617.6	in2	(From Suspension Cable Layout No. 1)
Pmax =	275	MN	61719	k	
Estimated forces in crossbeam at F	Pier E2				
X =	50.1	MN	11267	k	
ex =	500	mm	20	in	
Y =	4.6	MN	1033	k	
ey =	10785	mm	425	in	
Z =	0.4	MN	98	k	
ez =	2913	mm	115	in	
Mx = X ez + Z ey =	150718.0	MN-mm	111159	k-ft	
My = Y ex =	2296.6	MN-mm	1694	k-ft	
P/A + Mx/Sx + My/Sy =	170.3	MPa	24.69	ksi	
Seismic shear force					
Peq =	0.0	MN	0	k	
ez =	3087.0	mm	121.5	in	
P/A + Mx/Sx =	2.1	MPa	0.30	ksi	
Total stress =	172.3	MPa	24.99	ksi	D/C = 0.50 Ok

Appendix 3B

TYLin Calculations

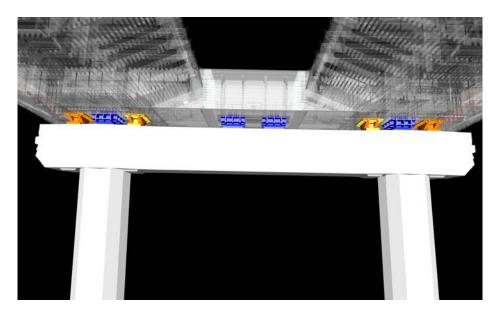
Steel Orthotropic Girder at Bearings

TRANSFER OF LOADS TO OBG

Self-Anchored Suspension Bridge

San Francisco Oakland Bay Bridge East Span Seismic Safety Project

Caltrans Project No. 04-0120F4


T.Y. Lin International / Moffatt & Nichol Joint Venture

July 27, 2013

BOX GIRDER SEISMIC CAPACITY DURING NEW DESIGN OF SHEAR KEYS S1, S2

These calculations evaluate the box girder at Pier E2 for seismic forces applied through the bearings prior to completing the new design of the shear keys S1 and S2. The modification of the bearings B1, B2, B3 and B4 by adding shims will not change the demands envisioned as part of the original design, shown in Page 3.

The connections of the bearings and shear keys to the OBG are achieved by the use of A354 BD rods anchored into stiffened anchor seats within the OBG. The tension of the rods generates friction to carry the longitudinal and transverse forces into a thickened key plate that forms the soffit of the box girder over Pier E2. The Key Plate appears in Section A-A of Page 4 and Section B-B of Page 5. This plate, 100 mm thick and 5 meters wide, forms a rigid platform to distribute the horizontal seismic loads coming from the shear keys and bearings, as well as from the global moments in the girders and crossbeam at Pier E2.

This figure shows the girders and crossbeams over the Pier E2 supports. The steel box crossbeam over the cap beam is subject to bending as it enters the main box girders. The box girders themselves bend as cantilevers over the support of the bearings and shear keys. These bendings produce compression in the key plates both transversely and longitudinally. These axial stresses have been added to the shear and axial stresses due to the bearings during an earthquake.

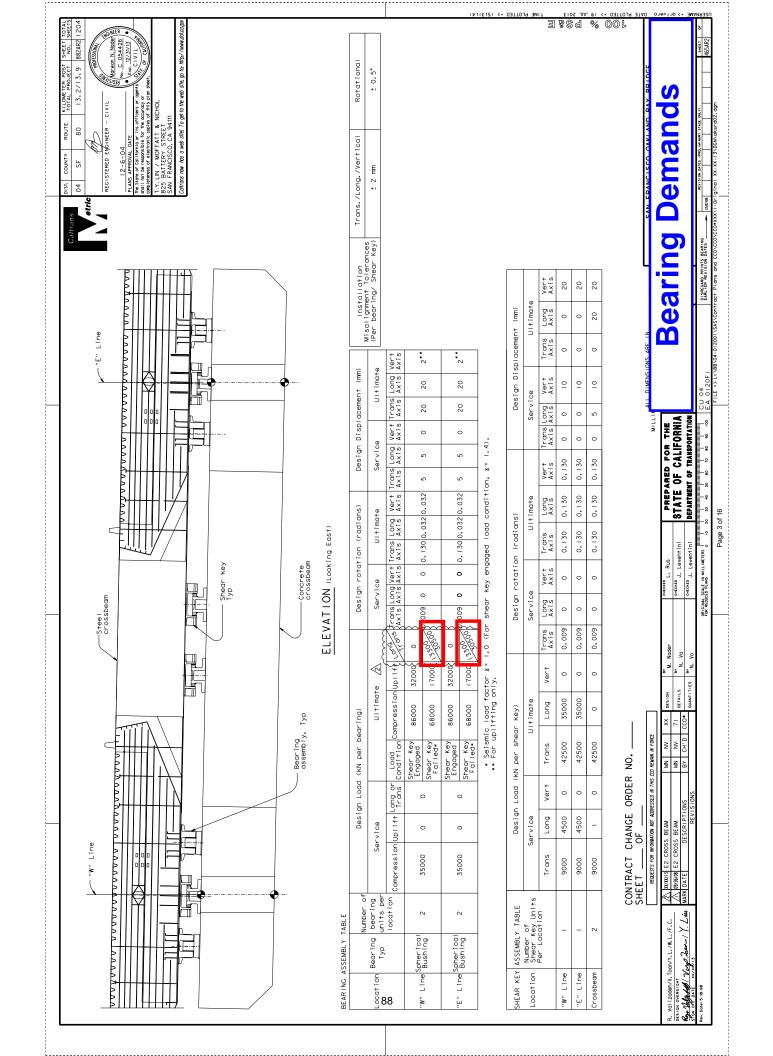
Vertical loads are carried by the tension of the rods, and by bearing against the stiffeners of the rod anchor seats. The layout of anchor seats is shown in Detail A on Page 4.

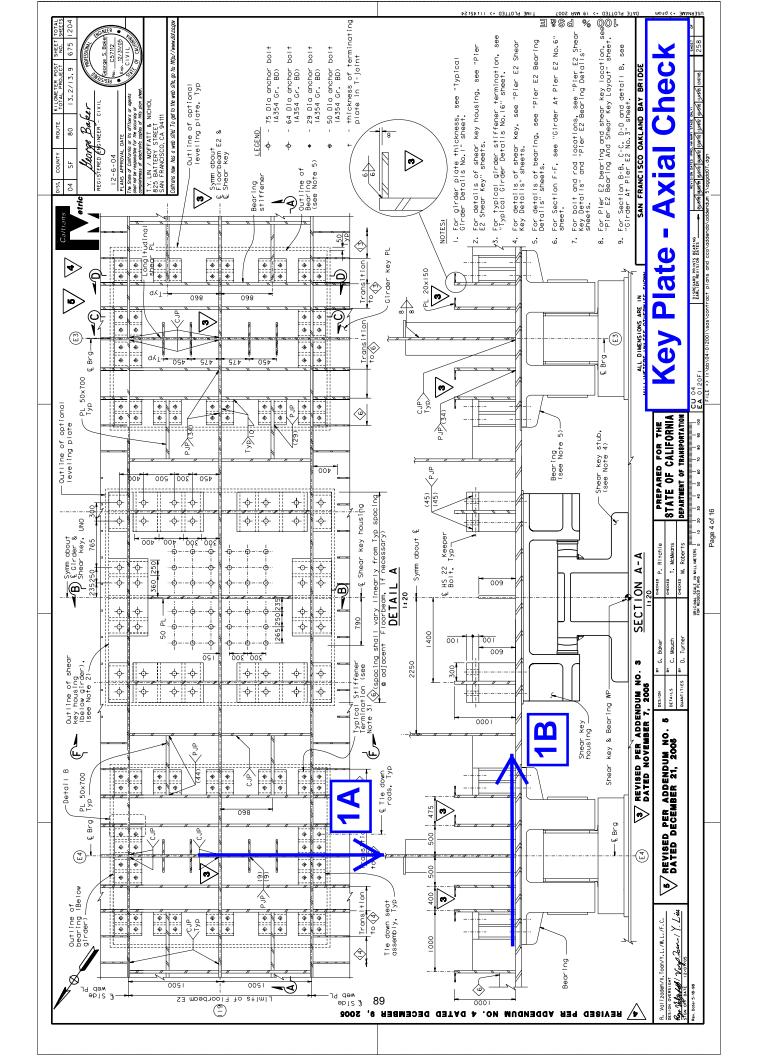
Pages 6 through 8 show the passage of seismic demands between the box girders and Pier E2. Page 6 shows the conceptual separation of the two structures. Page 7 shows the decomposition of force components at the bearing pins, as well as the vertical reactions into the girder due to the vertical and

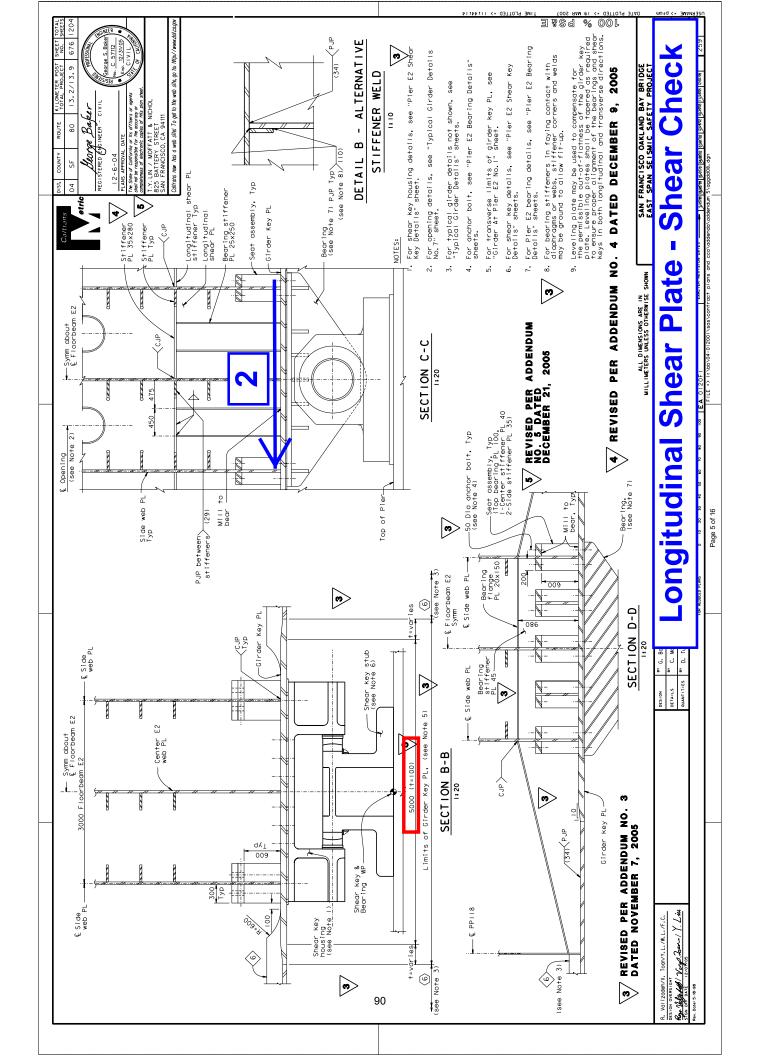
transverse demands. Page 8 shows the break-down of the longitudinal demands and resulting reactions. Page six also gives a table of the governing combined demands on the bearings for load path A (with shear keys engaged) and load path B (with shear keys disengaged).

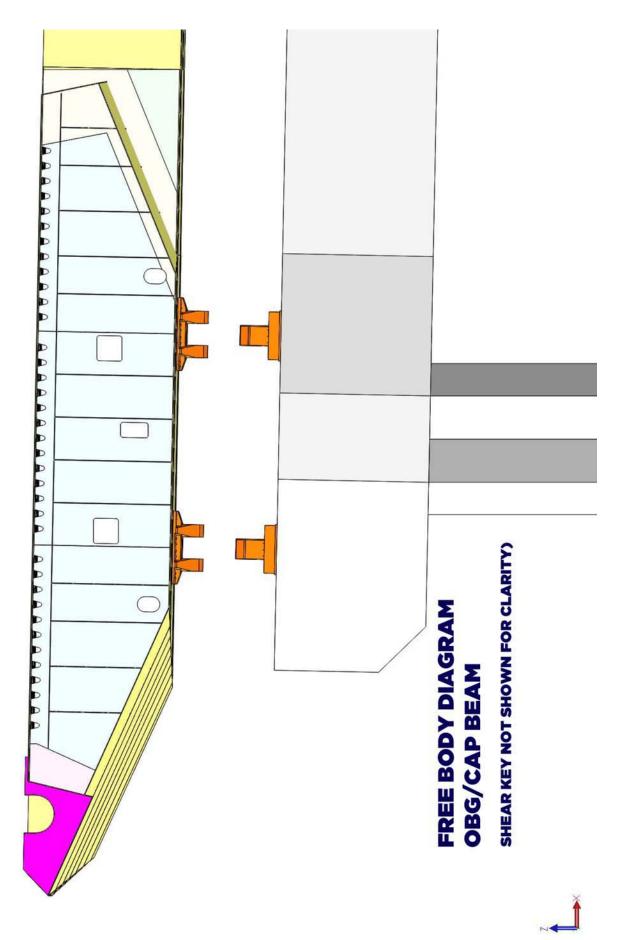
Pages 9 and 10 show the upper housing of the bearing. A total of 52 rods clamp this housing against the key plate, and the large width to height ratio results in relatively small values of vertical reactions RT and RL into the box girder.

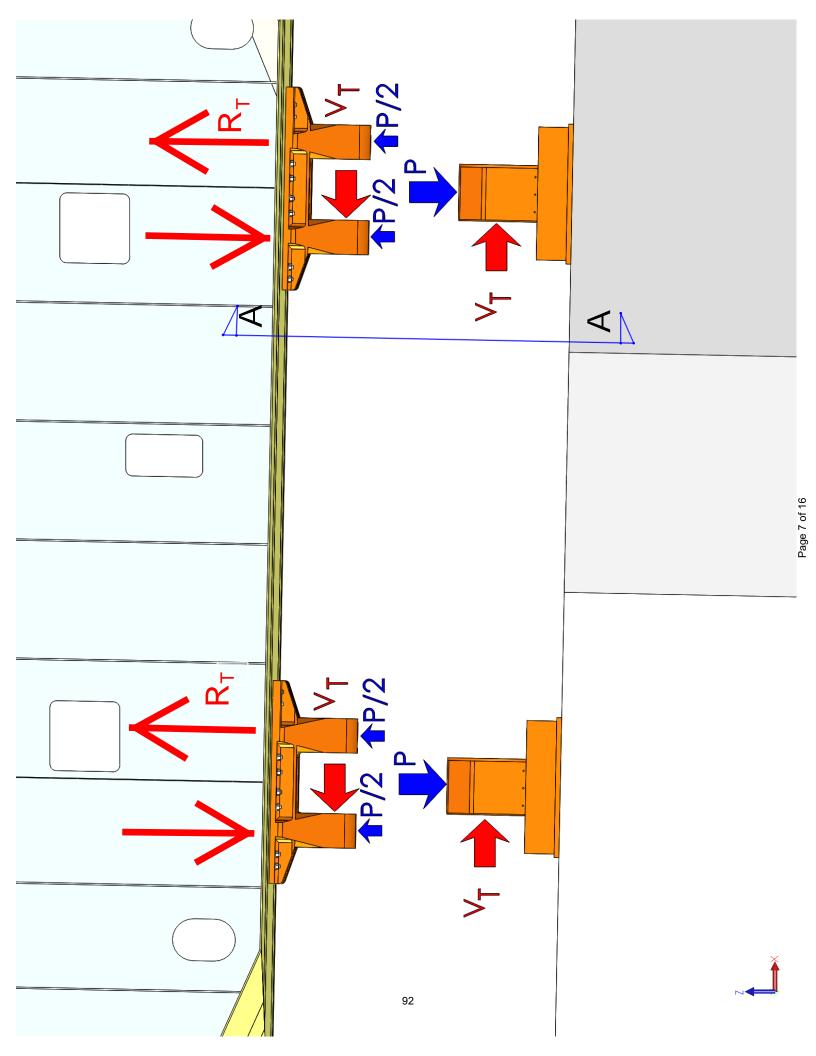
Pages 4, 5, 11-13 show the locations of shear, bearing and tension that have been checked to verify the capacity of the bearing to box girder connections. Pages 14-16 show representative calculations for the demand/capacity ratios for these locations.

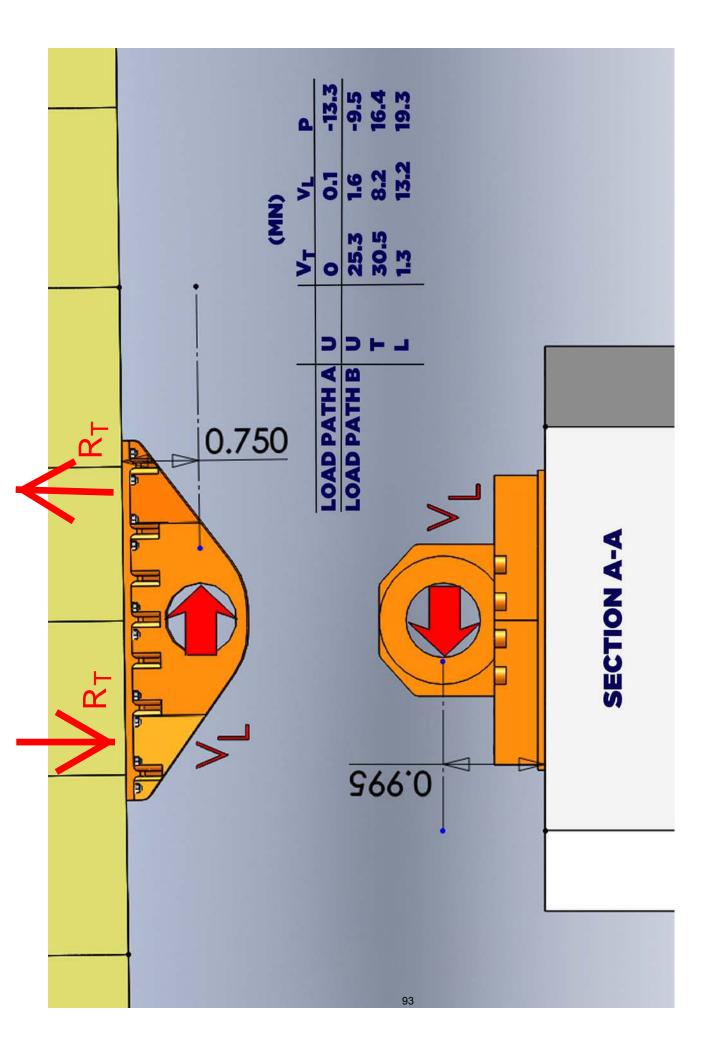

The floorbeams and longitudinal shear plates are stiffened compact elements that engage the seismic demands into the beam action of the overall box girder.

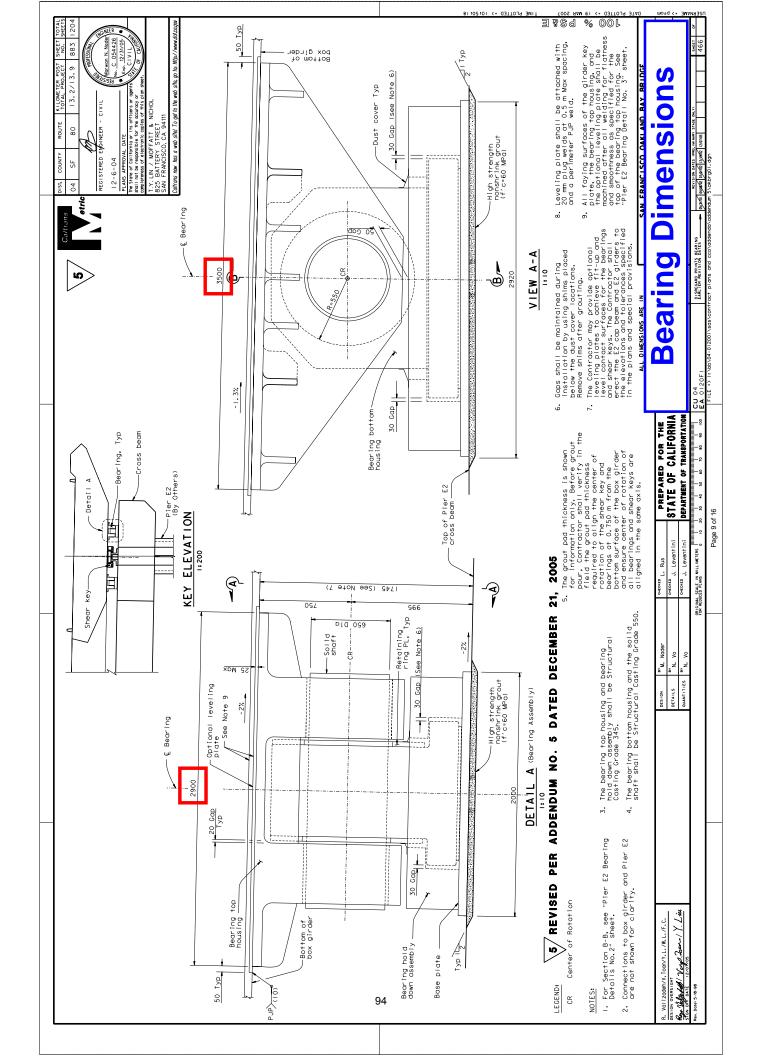

Component	Force	Demand/Capacity
1. Key plate	Longitudinal	10%
	Transverse	35%
	Combined Global and Local	62%
2. Longitudinal shear plate	Longitudinal to the Key Plate	76%
		80%
3. Floorbeams at Pier E2	Transverse to the Key Plate	50%
	Combined Global and Local	56%
4. Anchor seat middle	Tension of anchor rods	79%
stiffeners		
5. Anchor seat side	Tension of anchor rods	45%
stiffeners		
6. Floorbeam web	Shear tearout at anchor seats	87%
7. Bearing upper housing	Shear friction against sliding	45%
8. A354 anchor rods	Axial tension	93%

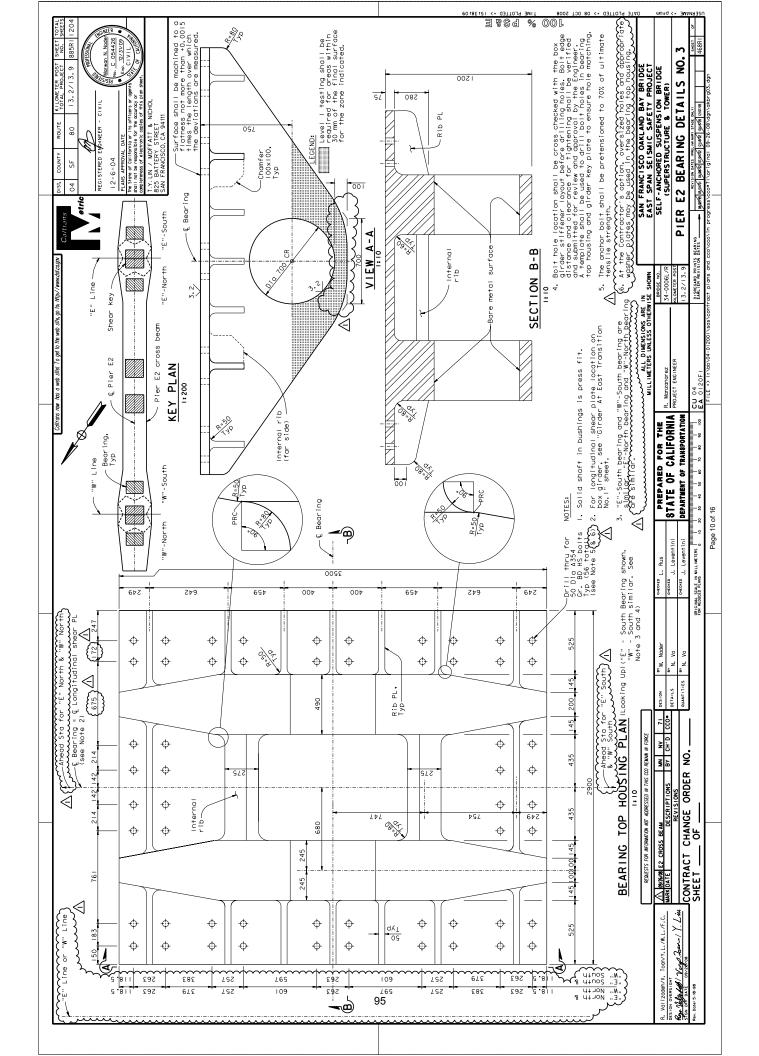

A summary of these ratios is provided in the following table, numbered per the figures in the appendix:

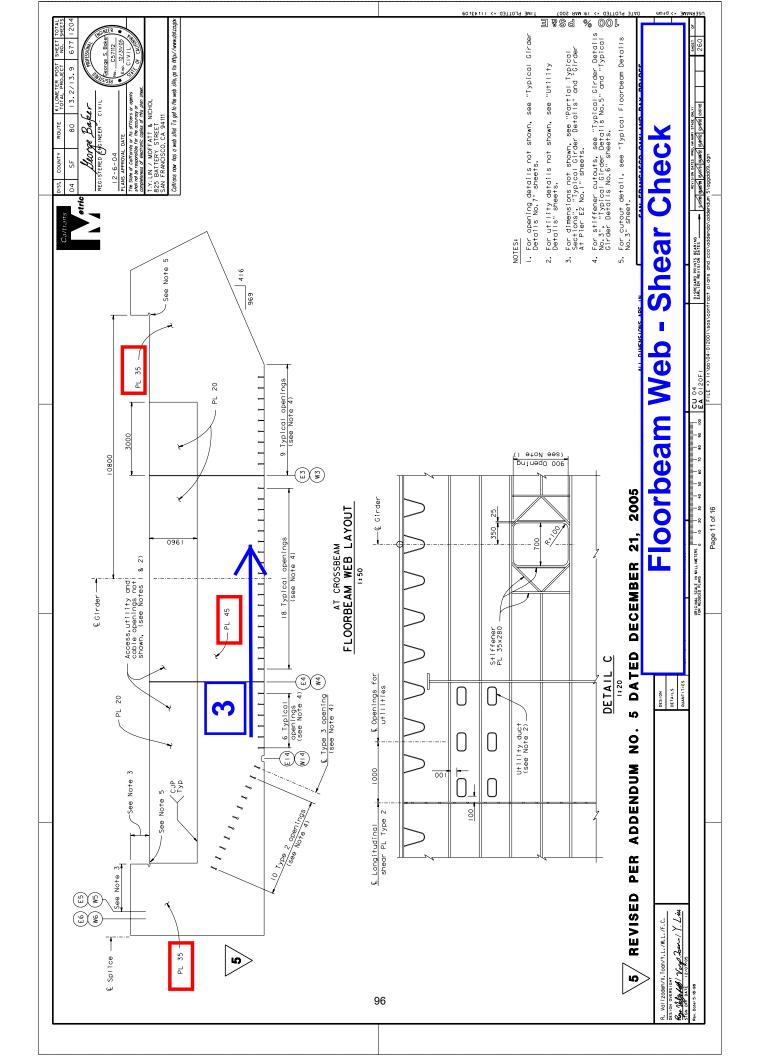

For the vertical reactions the pretension of the anchor rods carries effectively most of the load. Only a small increase in tension results from the seismic response. Note that anchor rods were installed at 85% of the yield capacity.

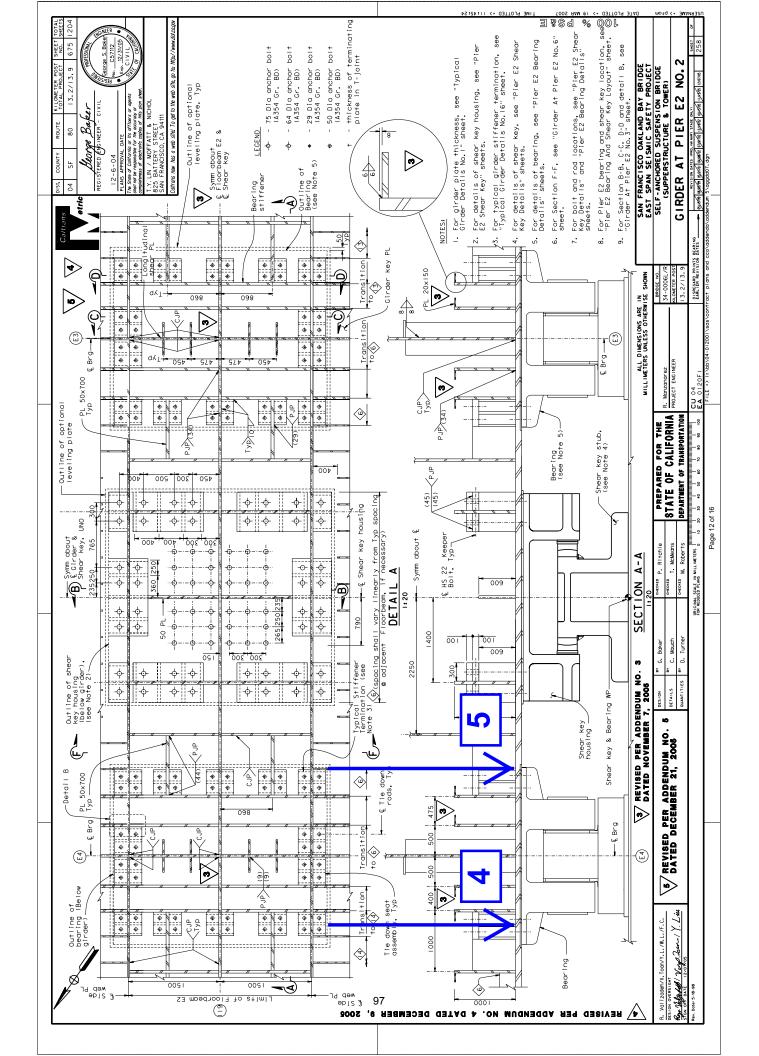

In conclusion, the use of load path B during the retrofit of shear keys S1 and S2 engages the capacities anticipated in the original design, and effectively protects the bridge in the event of the Safety Evaluation Earthquake.

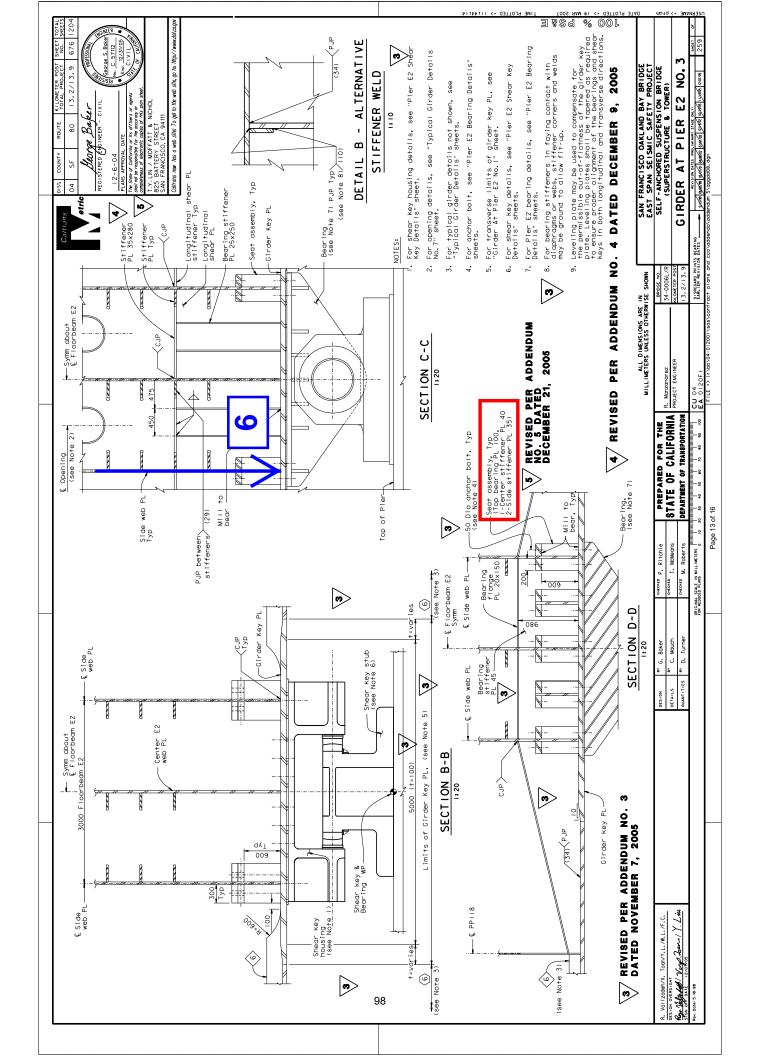








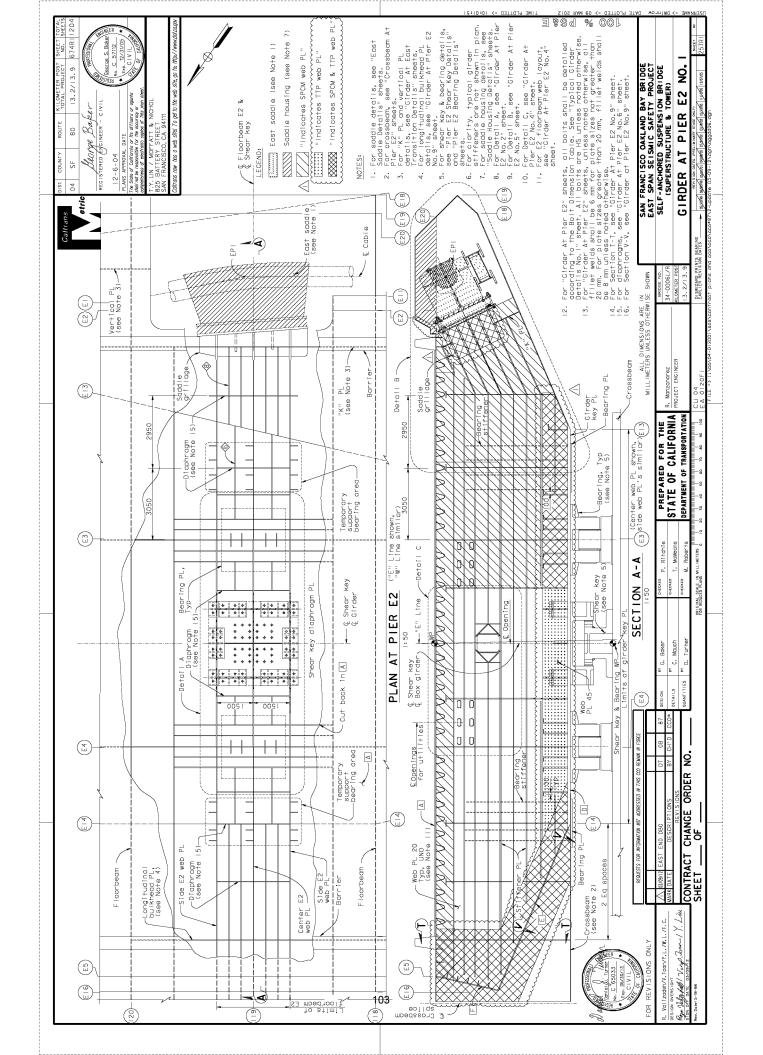


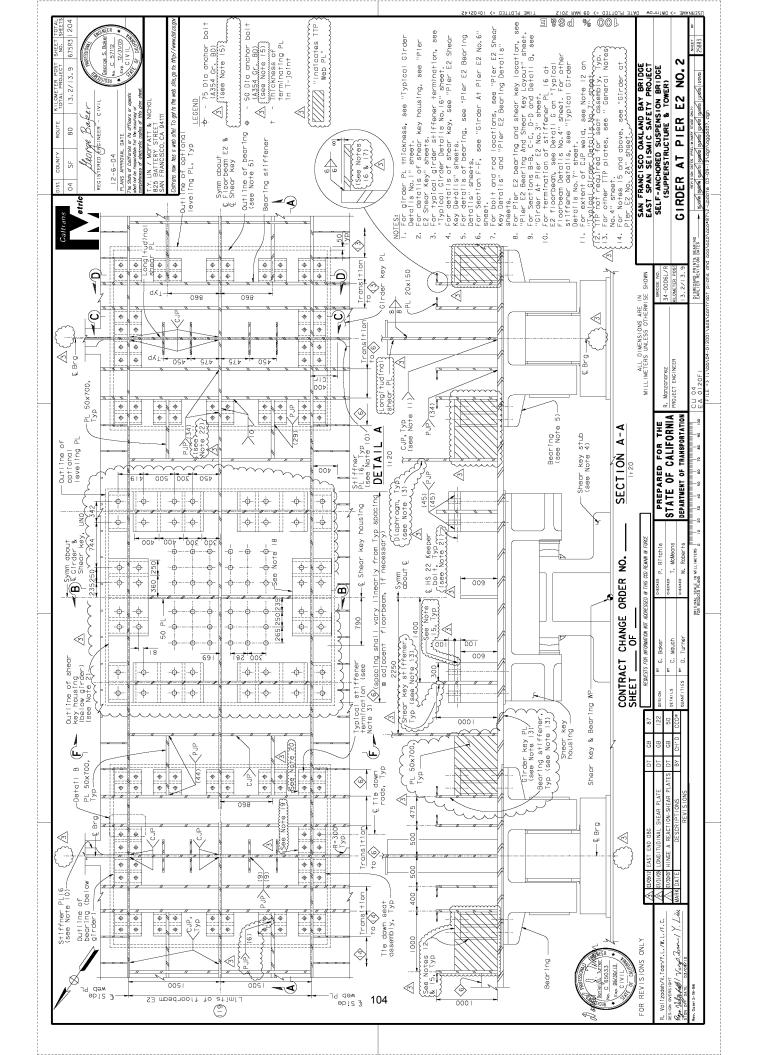


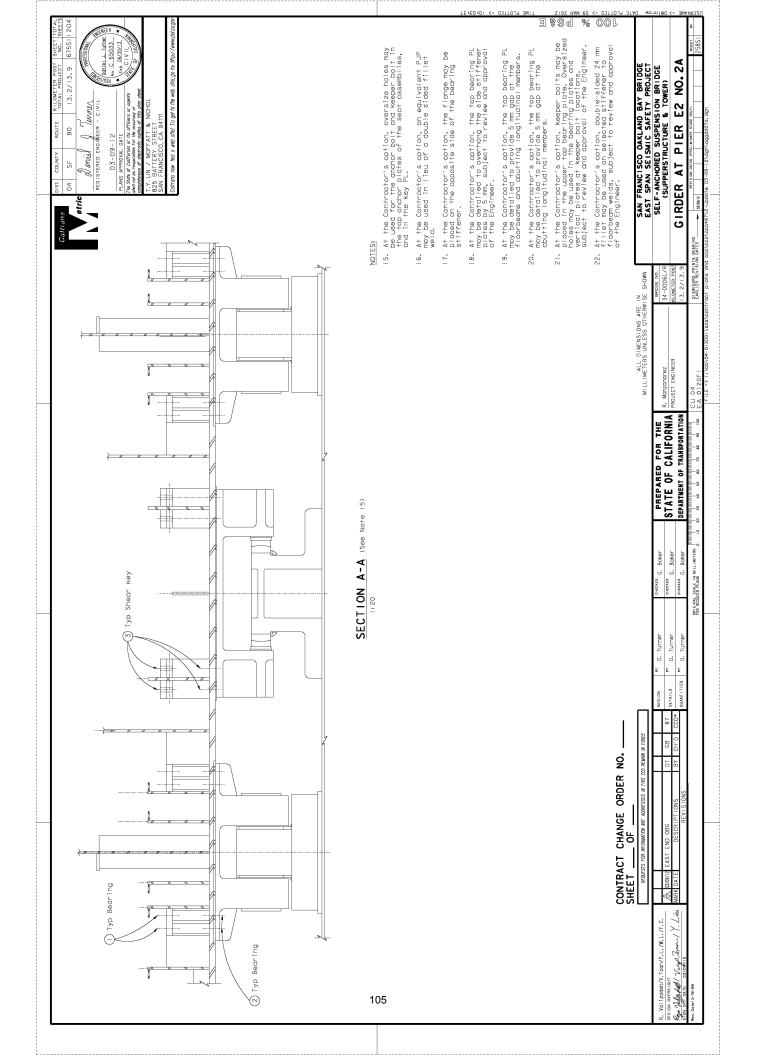
OBG Plates at Bearings

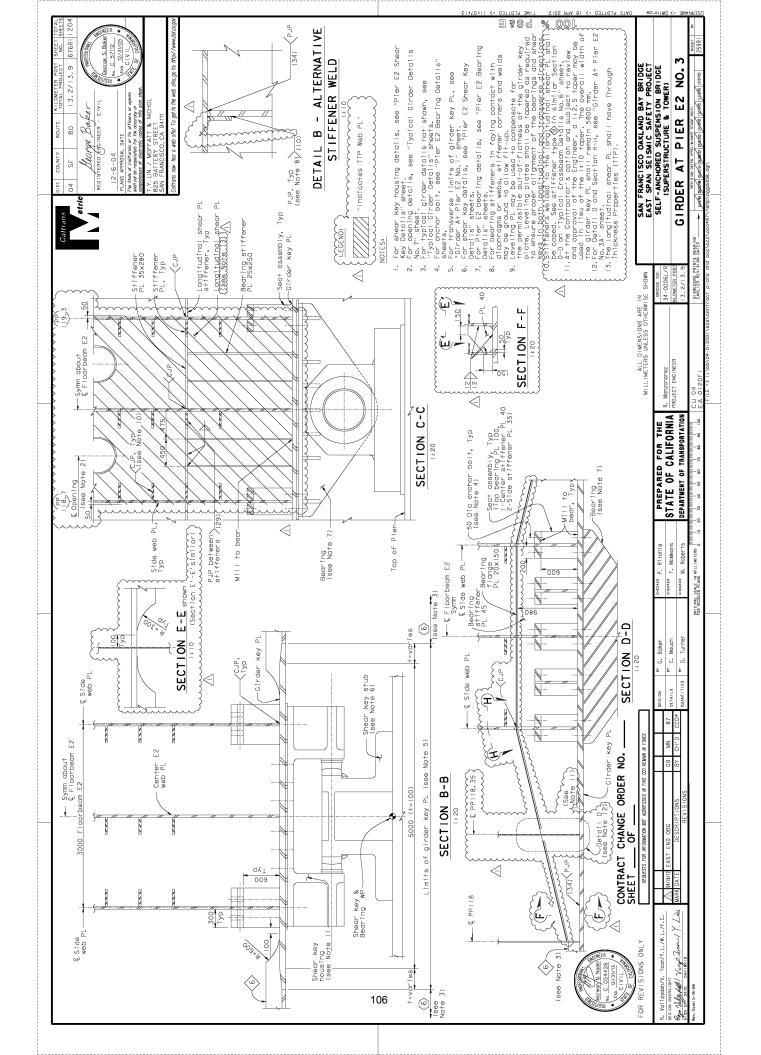
stresses neglect global OBG stre	sses		
Formulas			
		Reference	Comment
Steel Plate Properties	Creek Blanch the March		
Fy	345 MPa	Sheet 423	
E	200,000 MPa		
Force Applied to OBG per Bearing			
Transverse	30.5 MN	Sheet 882A	
Longitudinal	13.3 MN	Sheet 882A	
Key Plate			
Transverse dimension	2900 mm		
Longitudinal dimension	5000 mm	Sheet 676	
t	85 mm	Sheet 676	TC-RFI-34R1 allows key plate to be milled to 85m
Axial Check			
1A) Longitudinal Axial Capacity	146.6 MN		
Longitudinal Axial Demand	13.3 MN		
D/C	0.09		
1B) Transverse Axial Capacity	85.0 MN		
Transverse Axial Demand	30.5 MN		
D/C	0.36		
<u>Longitudinal Shear Plates</u> t	25 mm	Sheet 691	
Longitudinal dimension	3500 mm	Sheet 883	
Sheer Check			
Shear Check	47.5 101		
Design Shear Capacity	17.5 MN		
Design Shear Capacity Shear Demand	13.3 MN		
Design Shear Capacity			
Design Shear Capacity Shear Demand D/C	13.3 MN		
Design Shear Capacity Shear Demand D/C Floorbeam Webs	13.3 MN 0.76	Sheet 677	
Design Shear Capacity Shear Demand D/C <u>Floorbeam Webs</u> t	13.3 MN 0.76 35 mm	Sheet 677	
Design Shear Capacity Shear Demand D/C <u>Floorbeam Webs</u> t Transverse dimension	13.3 MN 0.76 35 mm 2900 mm	Sheet 677 Sheet 883	
Design Shear Capacity Shear Demand D/C <u>Floorbeam Webs</u> t	13.3 MN 0.76 35 mm		
Design Shear Capacity Shear Demand D/C <u>Floorbeam Webs</u> t Transverse dimension	13.3 MN 0.76 35 mm 2900 mm		
Design Shear Capacity Shear Demand D/C <u>Floorbeam Webs</u> t Transverse dimension no. of webs	13.3 MN 0.76 35 mm 2900 mm		
Design Shear Capacity Shear Demand D/C Floorbeam Webs t Transverse dimension no. of webs Shear Check	13.3 MN 0.76 35 mm 2900 mm 3		
Design Shear Capacity Shear Demand D/C Floorbeam Webs t Transverse dimension no. of webs Shear Check Design Shear Capacity	13.3 MN 0.76 35 mm 2900 mm 3 60.9 MN		

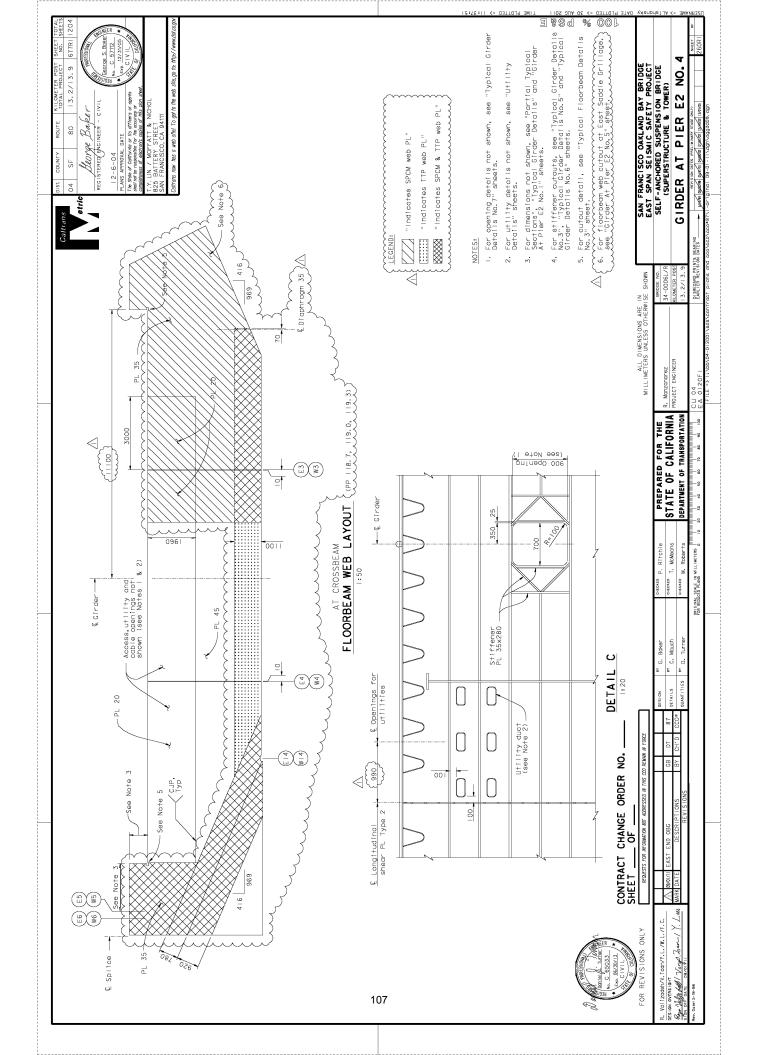
Bearing to OBG Bolted Connection

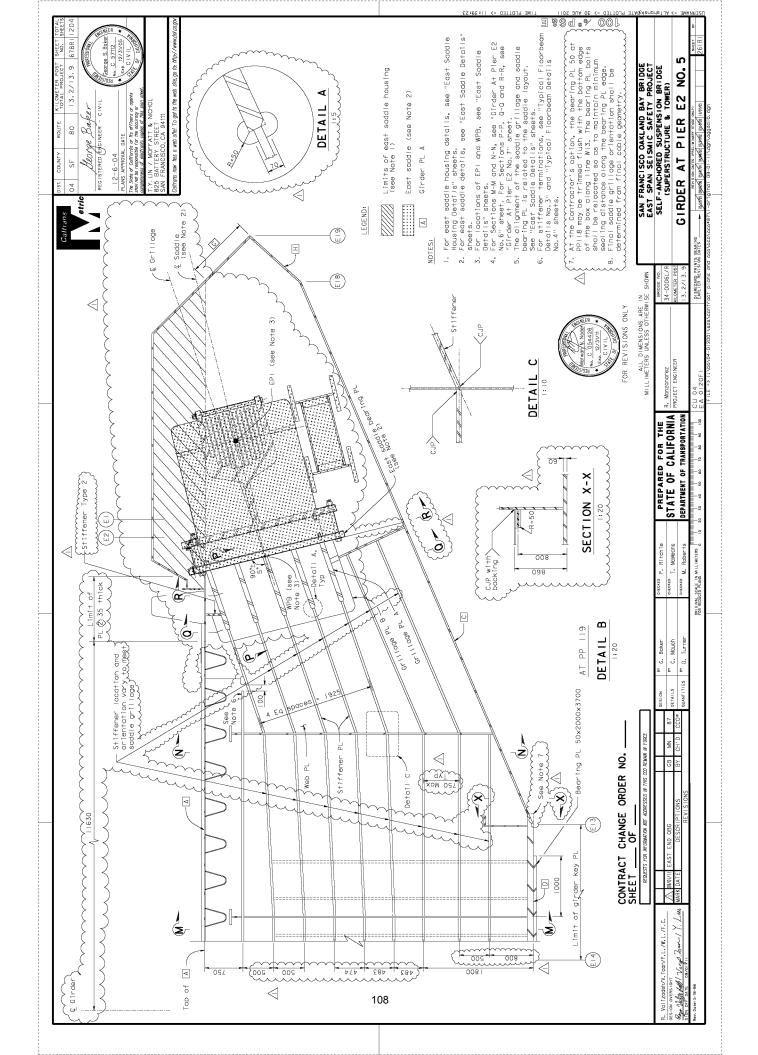

Formulas			
		Reference	Comment
Steel Plate Properties			
Fy	345 MPa	Sheet 423	
E	200,000 MPa		
F _{exx}	483 MPa		
Anchor Bolt Properties			
Diameter	50 mm	Sheet 675	
Tensile Strength	375 kips	ASTM A354	
Detector	1674 kN		
Prestress	1.0 Fu		
Pretension	1.67 MN		
4) <u>Vertical Stiffeners - Middle</u>			
D	550 mm	Sheet 676	50mm cope hole at bottom
b	200 mm	Sheet 676	
t	40 mm	Sheet 676	
Load on Stiffener	1.67 MN		Middle stiffener reaction = 2 rods x 50%
- Axial Check			
r	11.5 mm		
kL/r	47.6		
sqrt (2 x π^2 x E / Fy)	107.0		
F _{cr}	311 MPa	BDS 10-152	
Design Axial Strength	2.11 MN	BDS 10-150	ок
D/C	0.79		
- Shear Check			
D/t _w	13.8		
6000 x sqrt(k) / sqrt F _v	323.0		
C	1.0		
Design Shear Strength	4.40 MN	BDS 10-115	OK
D/C	0.38	BB0 10-113	
2.0	0.00		
Weld Check			
PJP (E) Web to Stiff	34 mm		
Weld Factored Resistance	232 MPa		
Design Weld Strength	4.34 MN		01/
D/C			ОК
Die	0.39		
Bogging Check			
- Bearing Check Allowable	466 MPa		1 35E
		BDS 10.48.7	1.35F _y
Bearing Strength	3.73 MN		ОК
D/C	0.45		

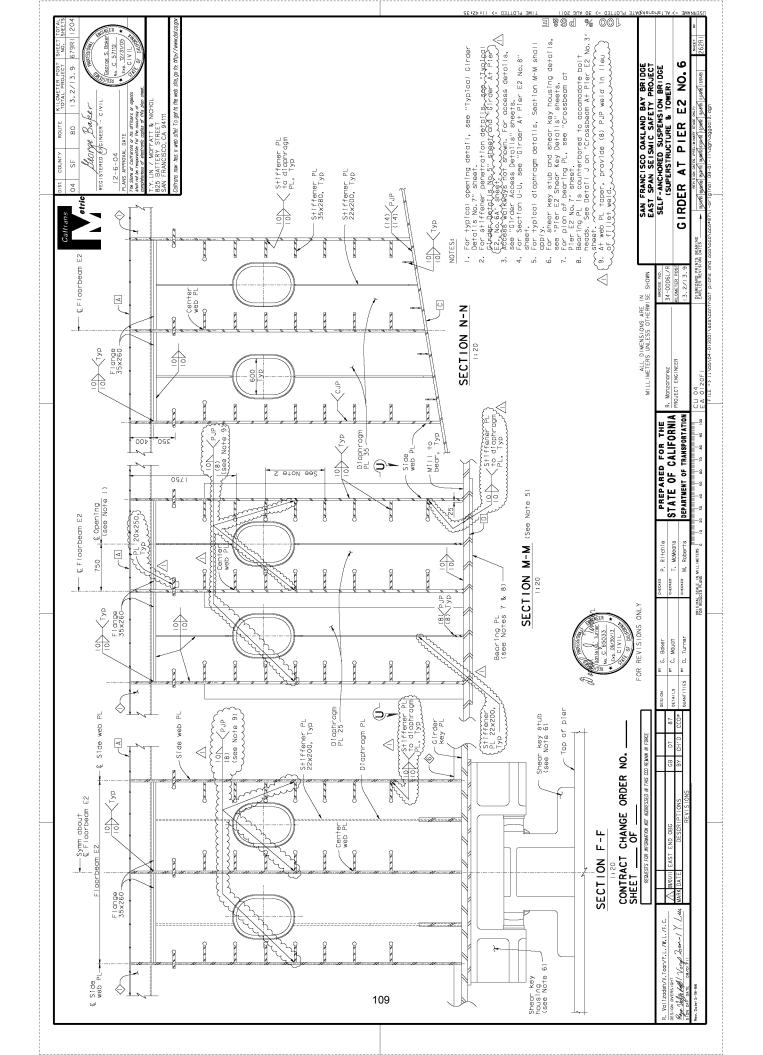

5) <u>Vertical Stiffeners - Side</u> D b t	550 mm 200 mm 35 mm	Sheet 676 Sheet 676 Sheet 676	50mm cope hole at bottom
Load on Stiffener	0.84 MN		Side stiffener reaction = 1 rod x 50%
- Axial Check r kL/r sqrt (2 x π ² x E / Fy) F _{cr} Design Axial Strength	10.1 mm 54.4 107.0 311 MPa 1.85 MN	BDS 10-152 BDS 10-150	ок
D/C - Shear Check D/t _w 6000 x sqrt(k) / sqrt F _y C Design Shear Strength D/C	0.45 15.7 323.0 1.0 3.85 MN 0.22	BDS 10-115	ок
Weld Check PJP (E) Web to Stiff Weld Factored Resistance Design Weld Strength D/C	29 mm 232 MPa 3.70 MN 0.23		ок
- Bearing Check Allowable Bearing Strength	466 MPa 3.26 MN 0.26	BDS 10.48.7	1.35F _у ОК
6) <u>Floorbeam Web</u> D t	550 mm 35 mm	Sheet 676 Sheet 677	
Load on Web	3.35 MN		50% reaction from 4 rods
Shear Tearout of Web Shear Capacity of Web D/C	3.85 MN 0.87		ок

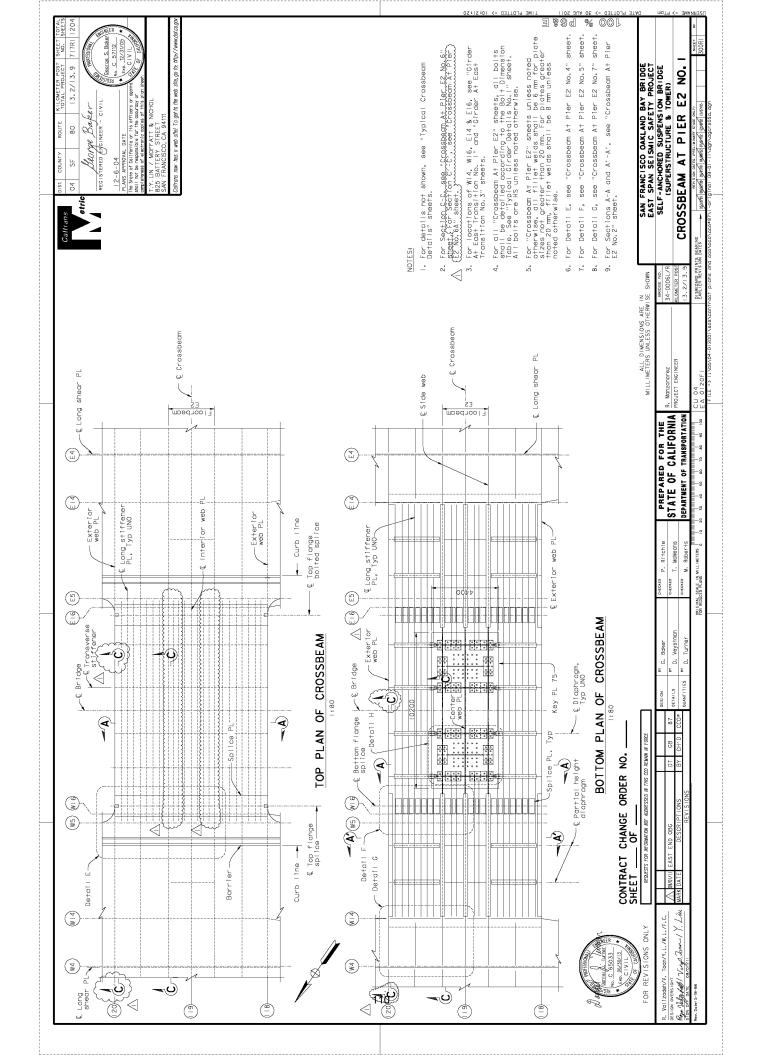

Appendix 3C

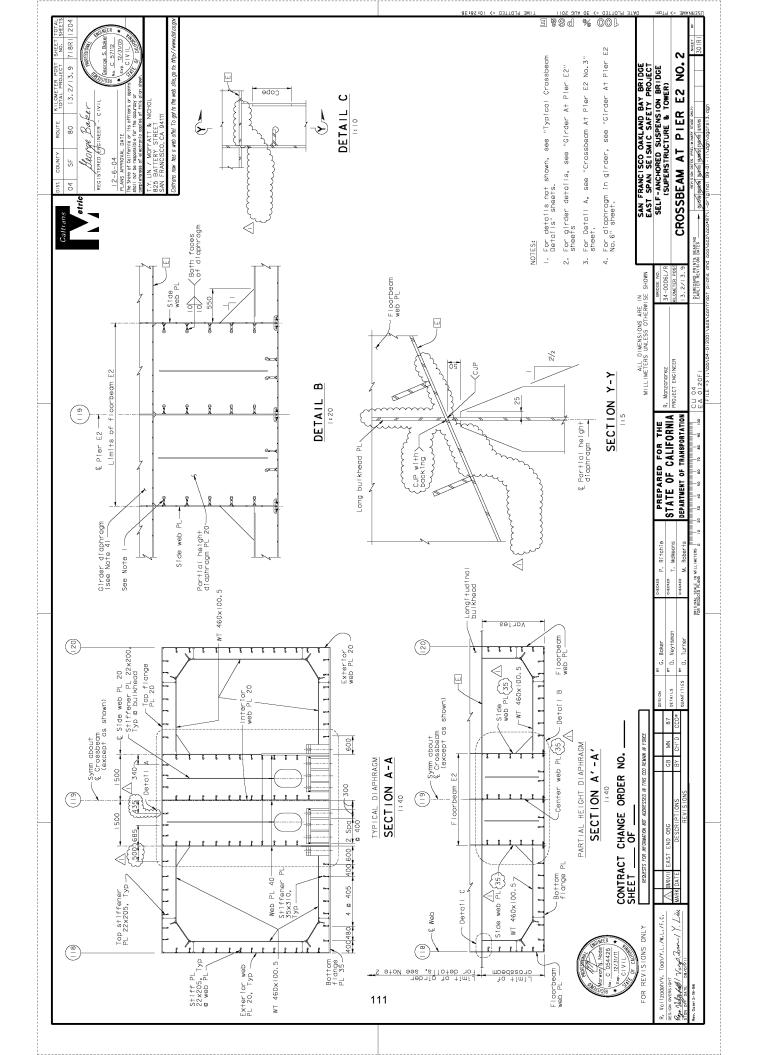

Design Drawings

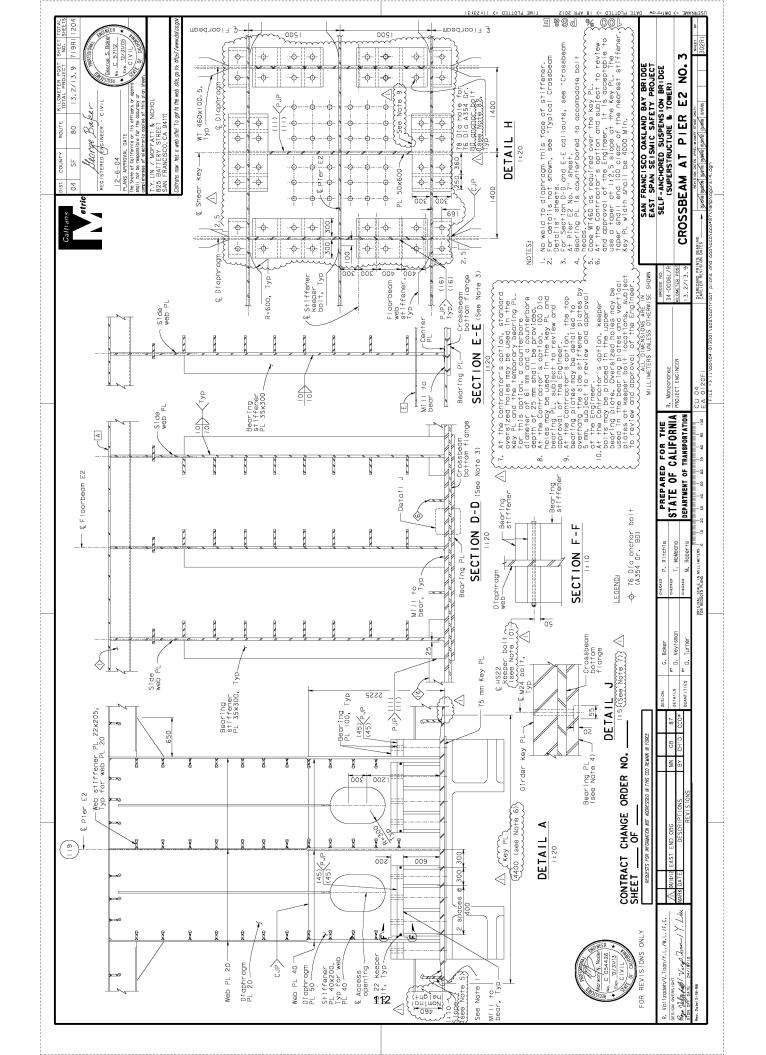

Orthotropic Box Girder at Pier E2, Crossbeam at Pier E2, Bearing and Shear Key Details

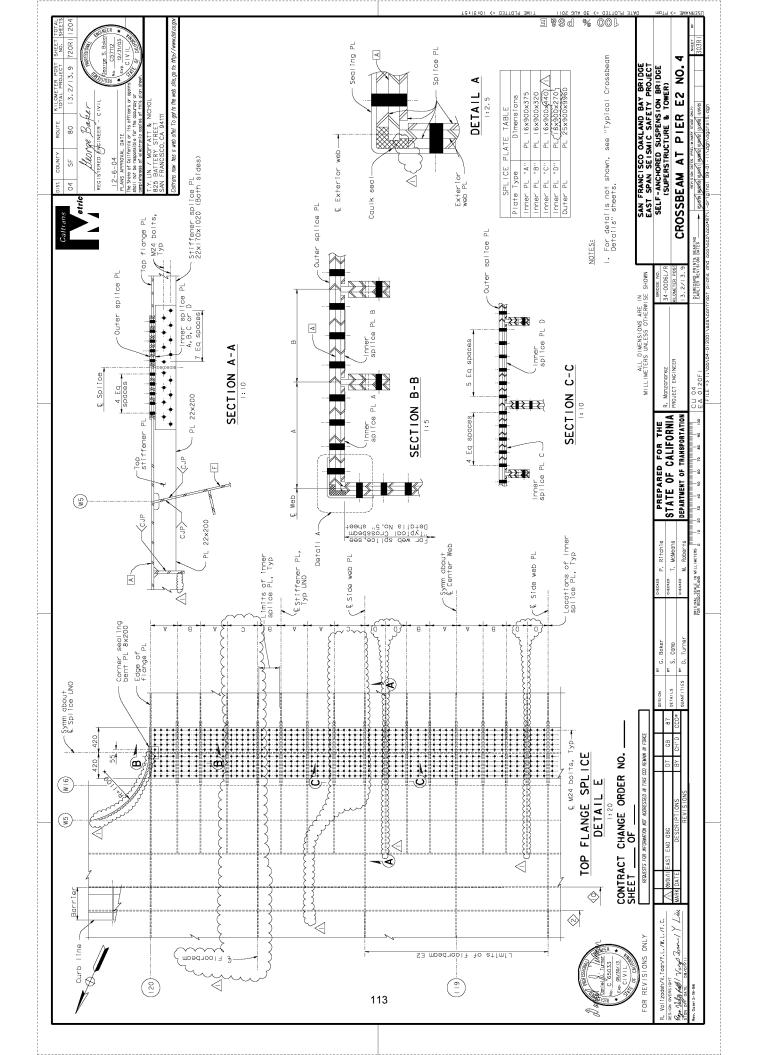


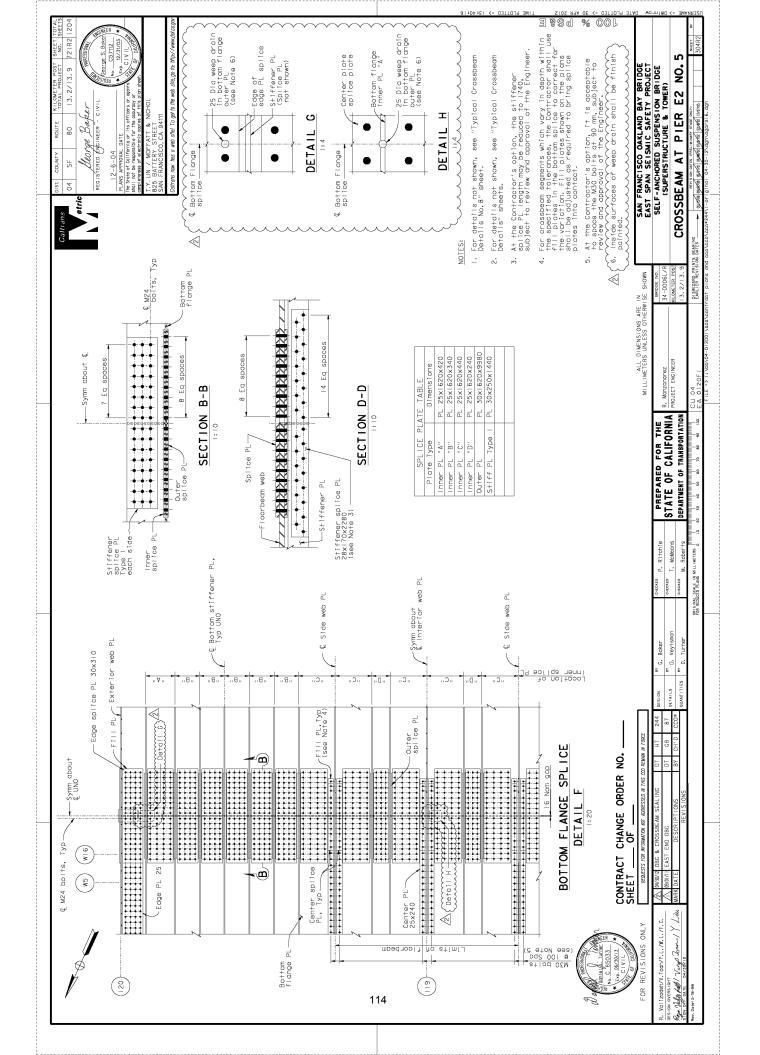


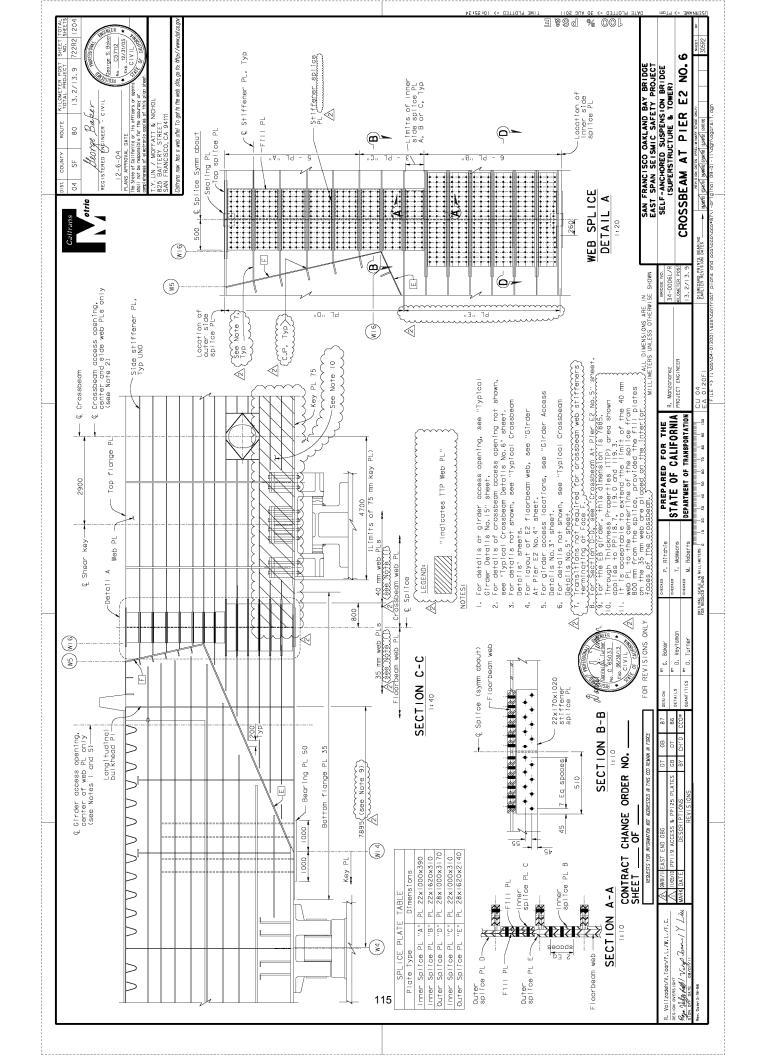


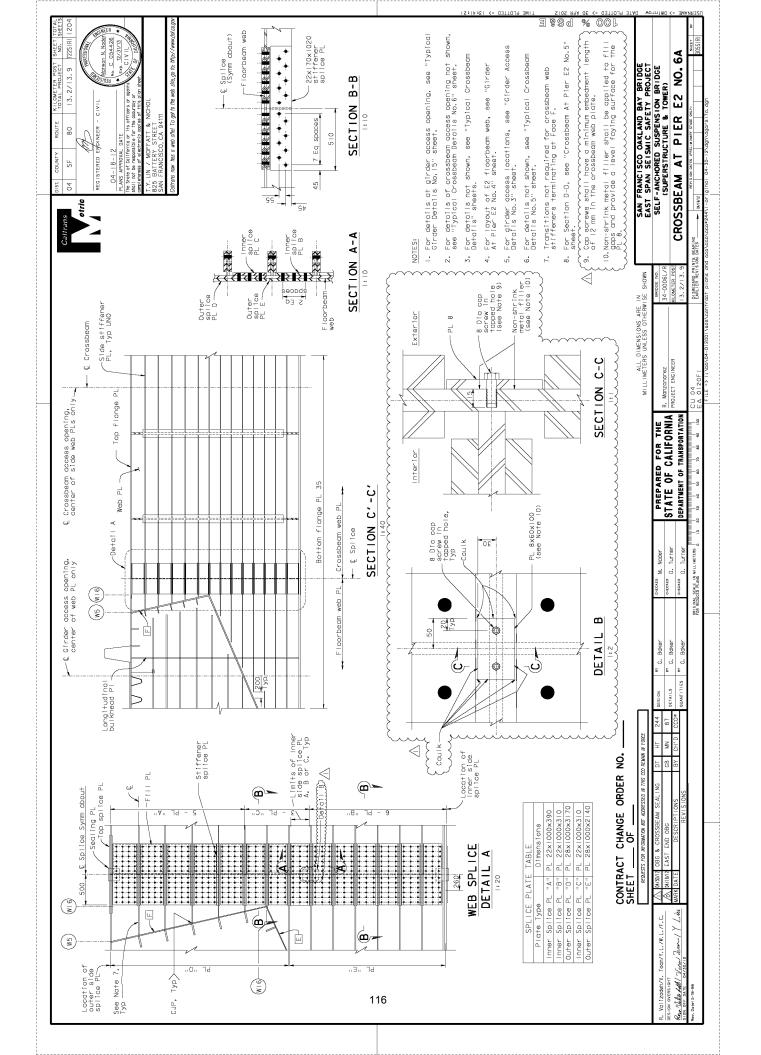


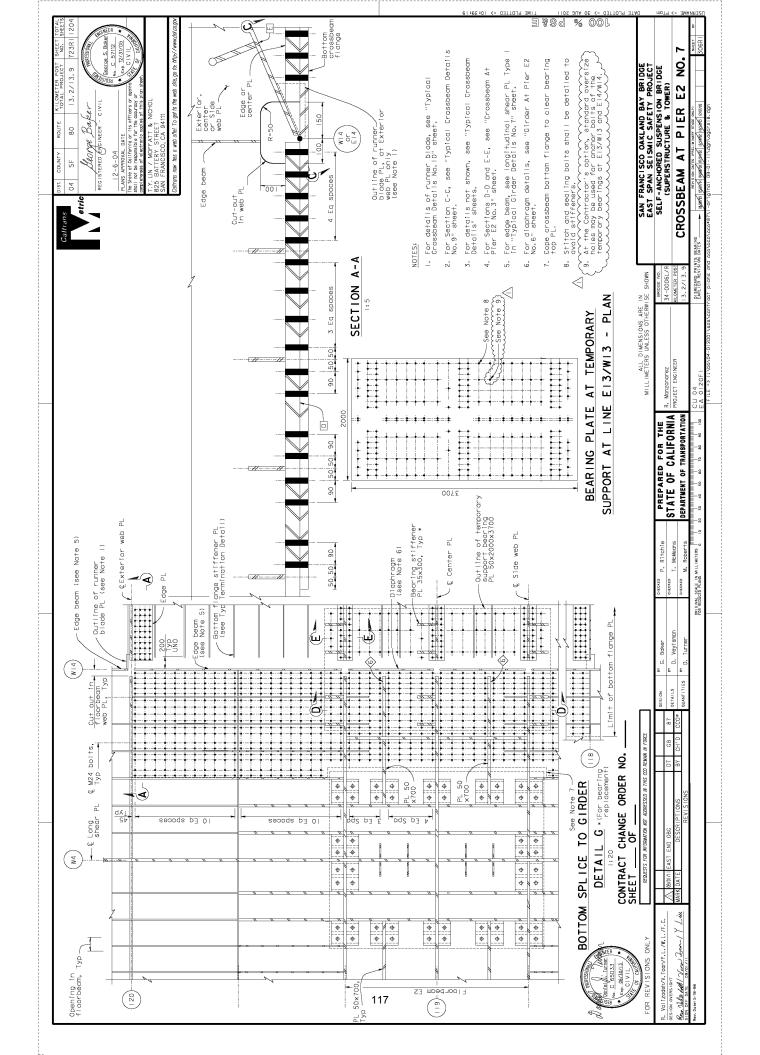


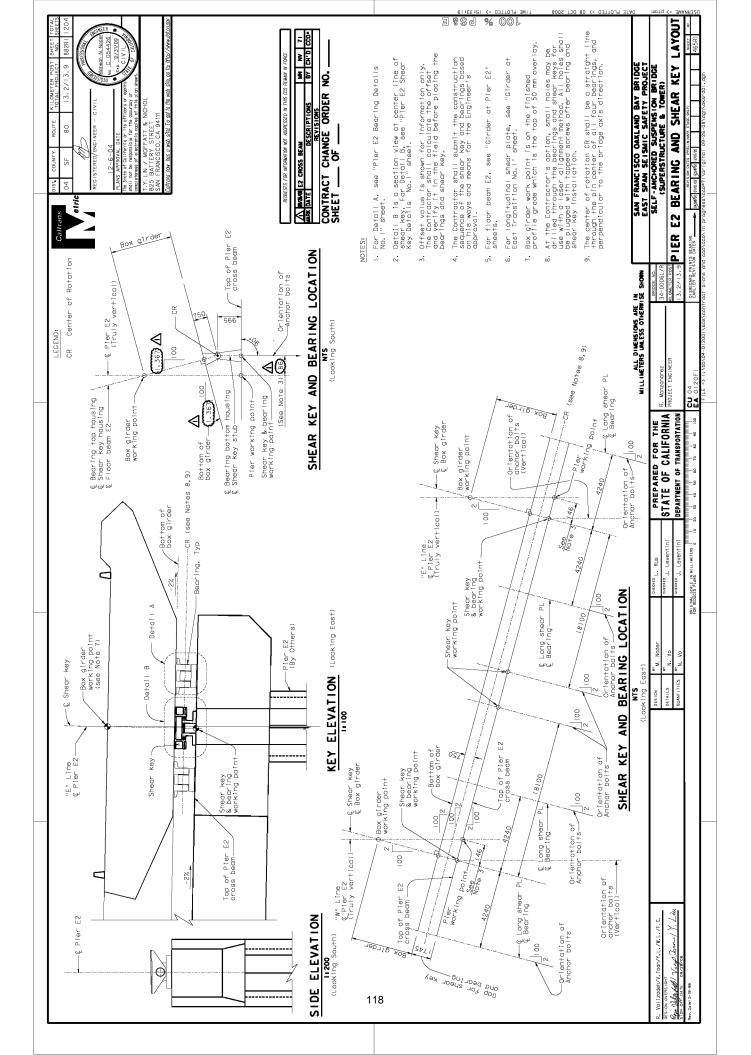


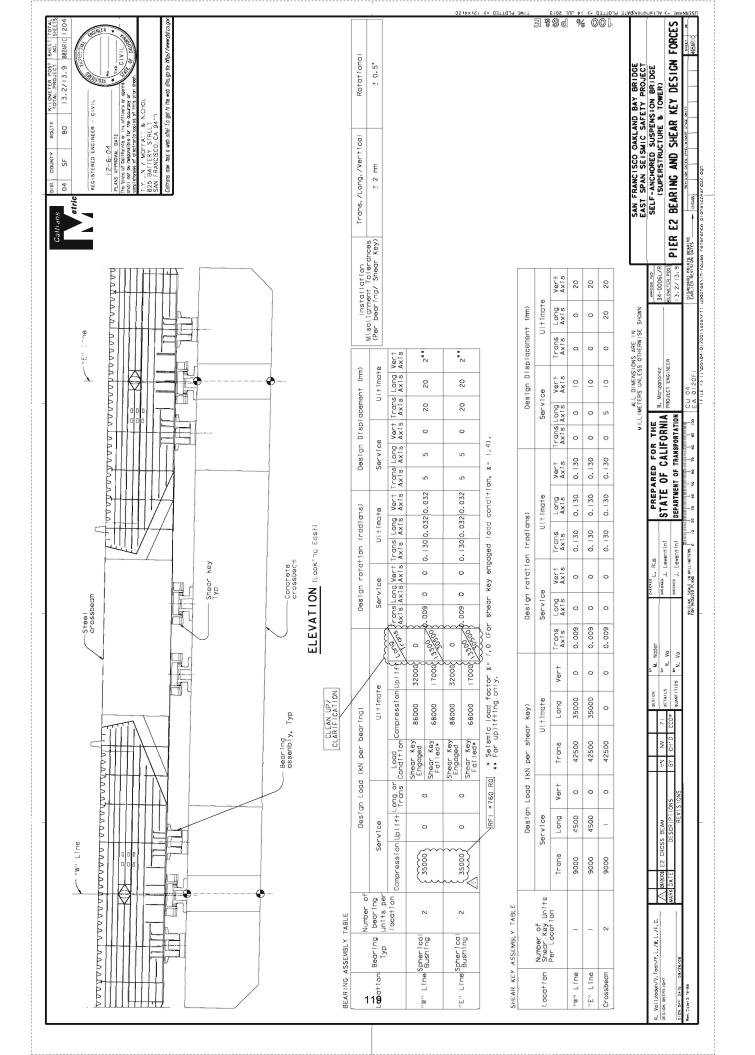


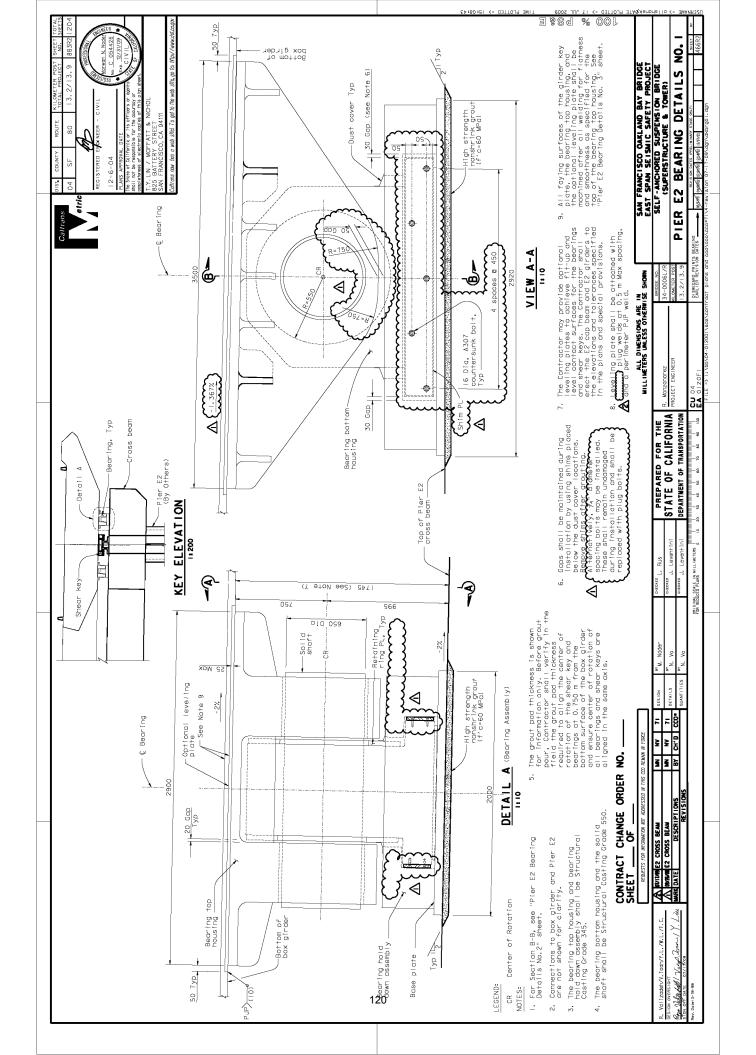


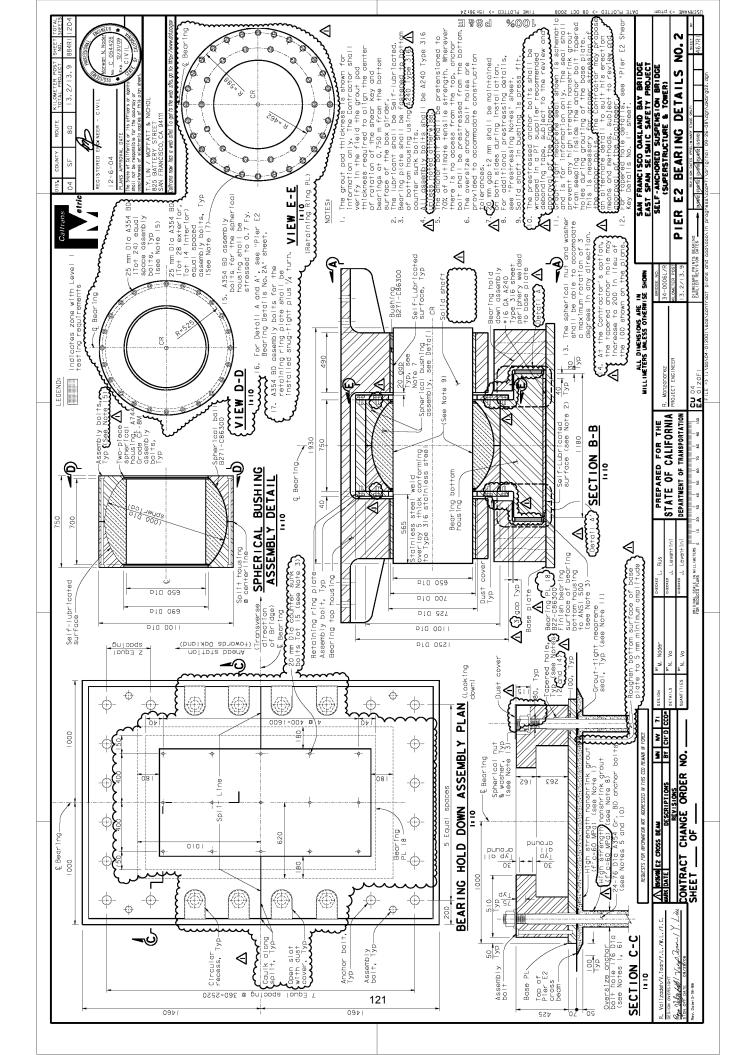


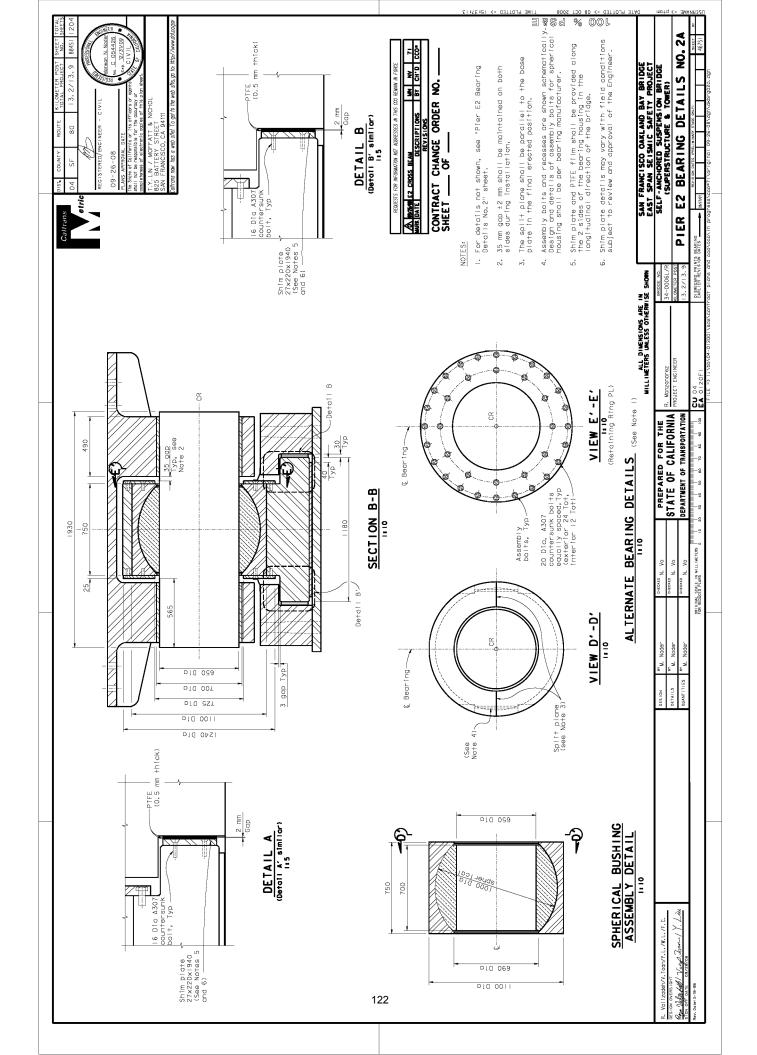


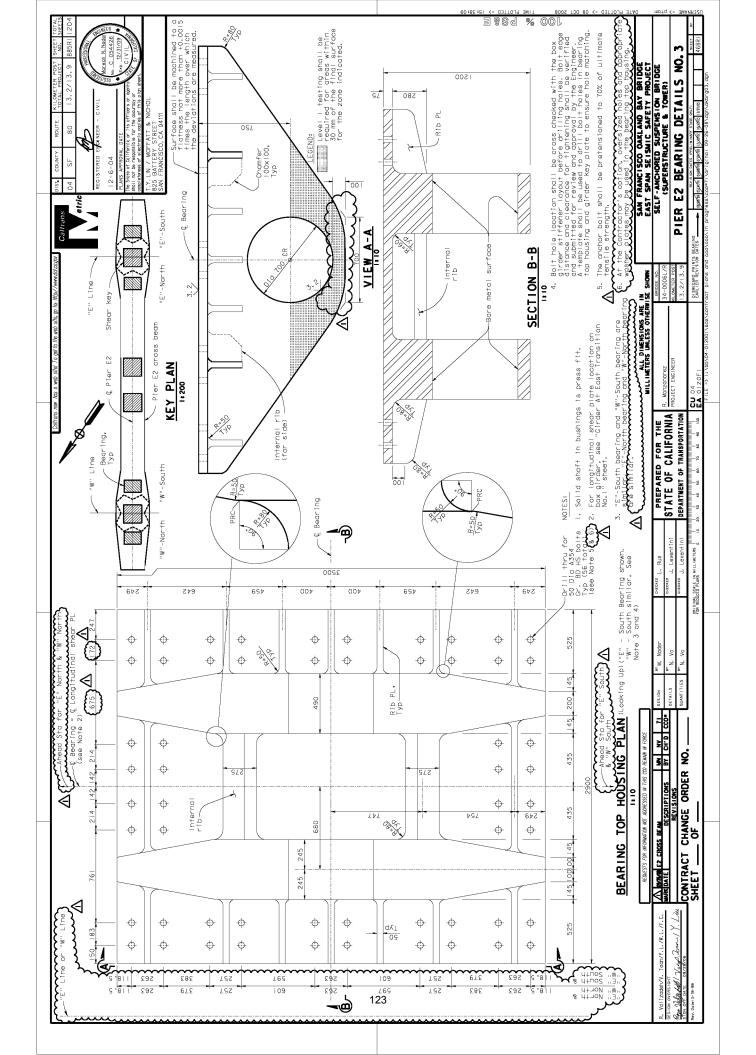


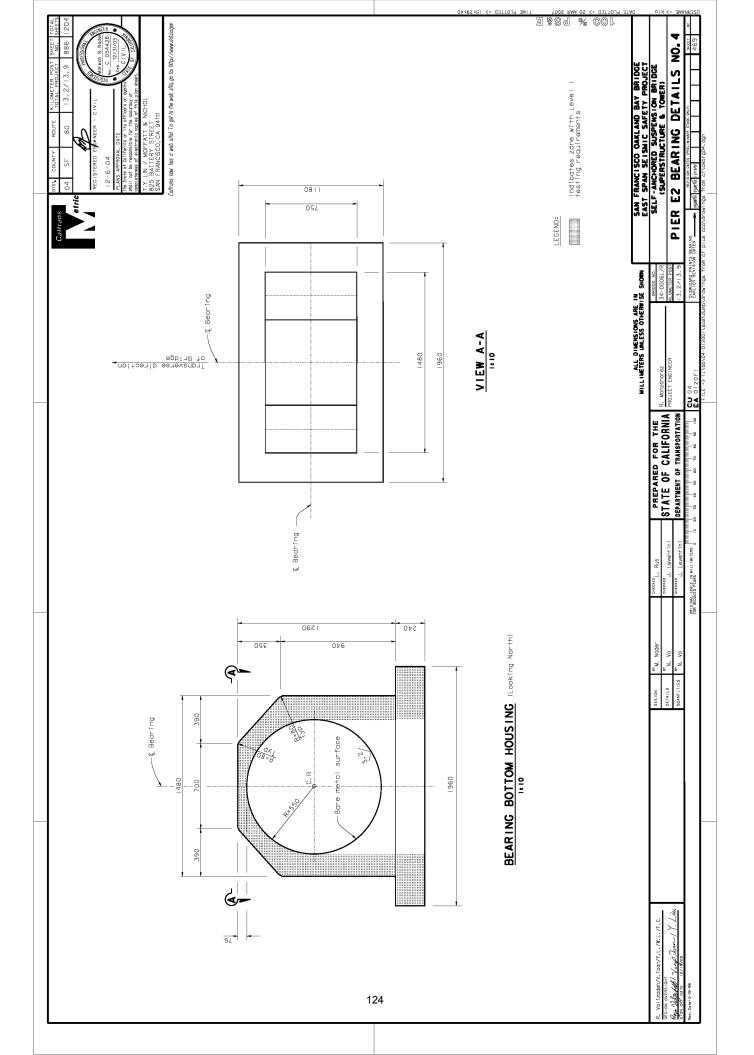


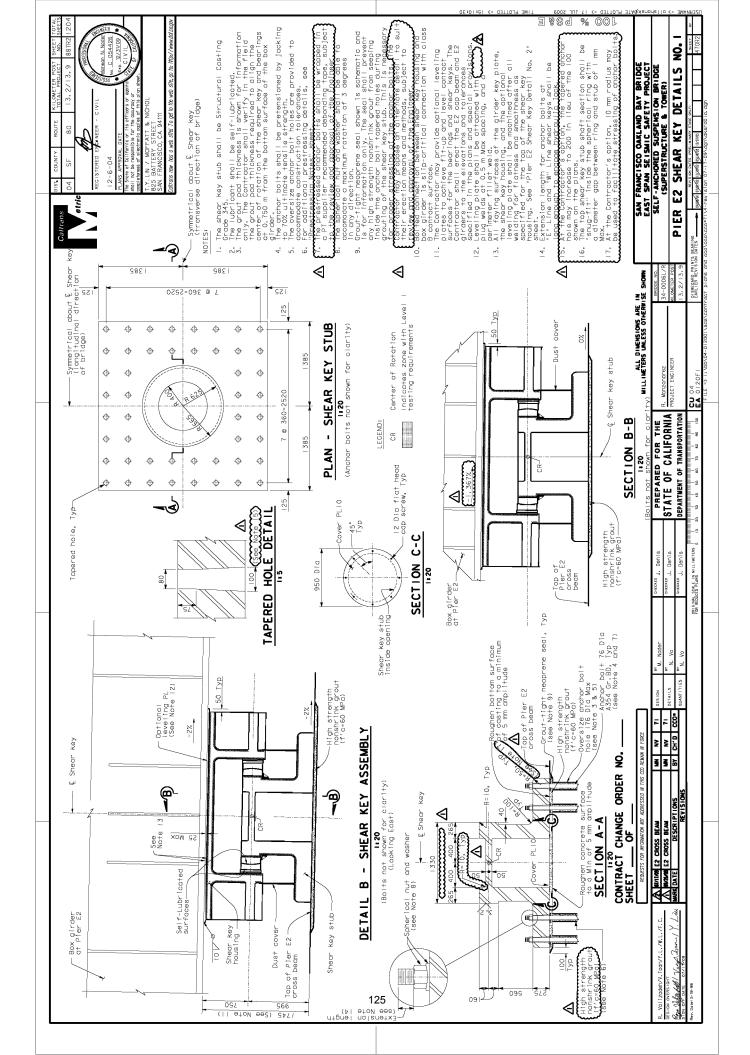


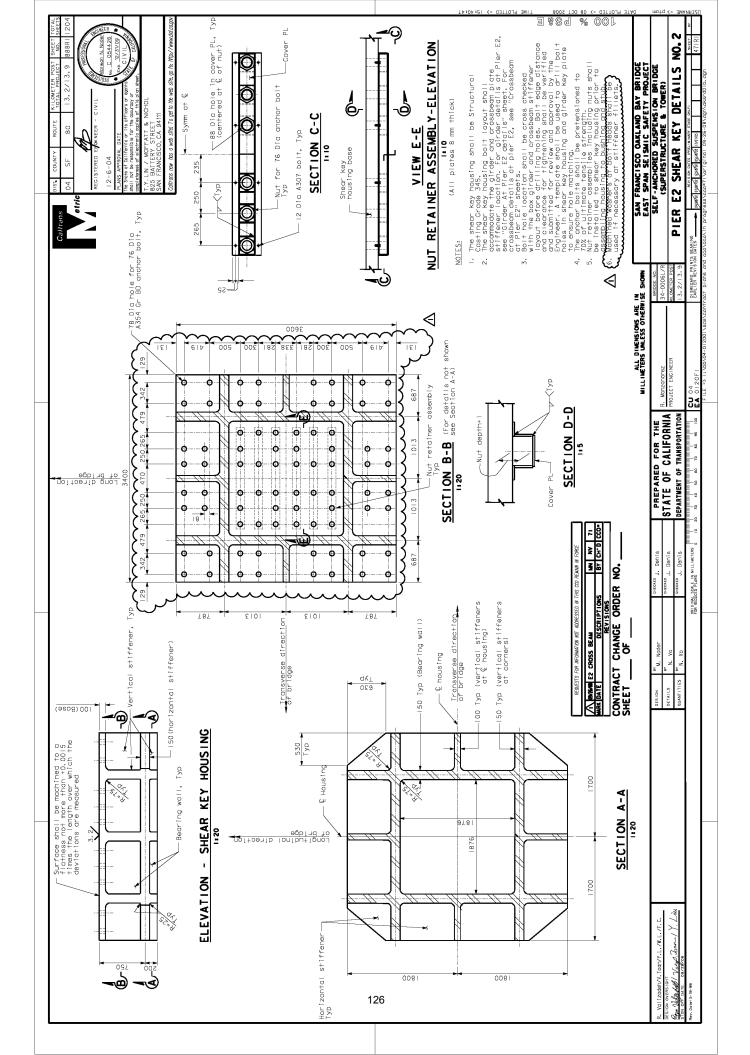


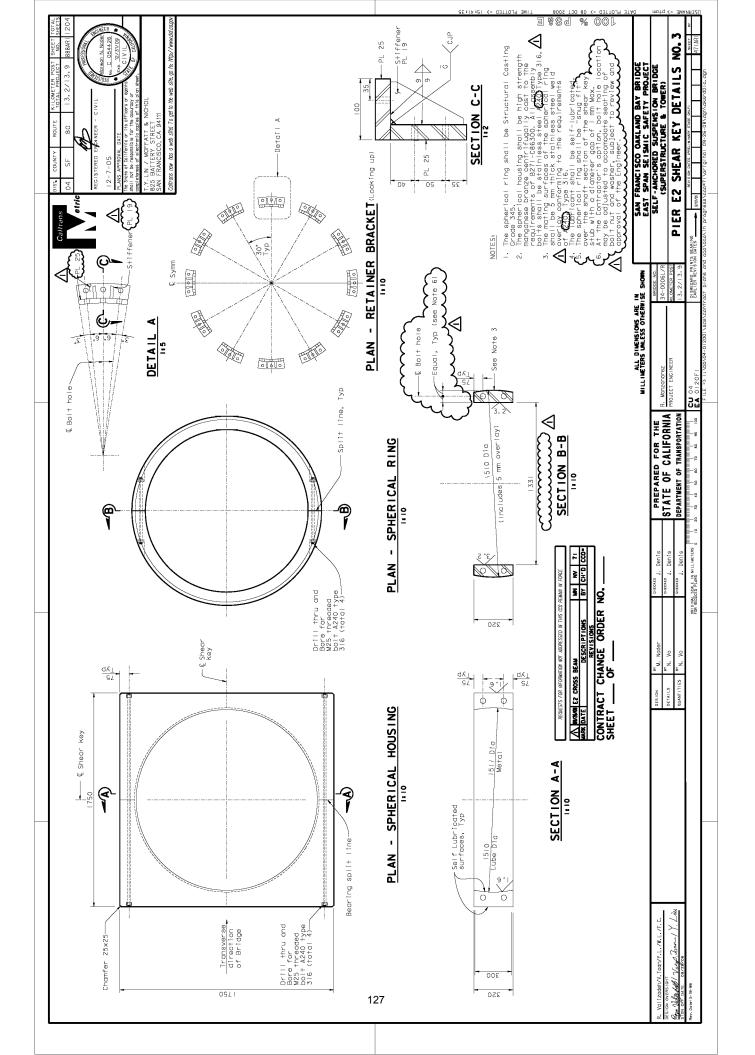


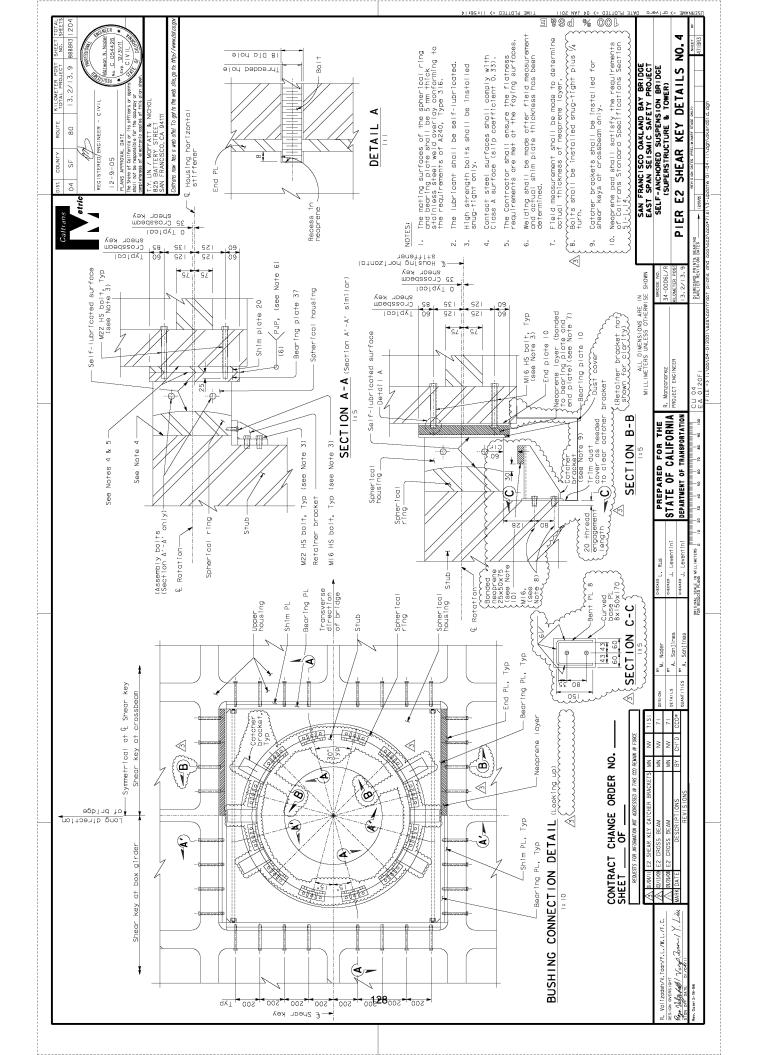












<u>Appendix 4</u>

Strut Sectional Checks

8/8/2013 8/8/2013	- 10		U	24 KN/m3					0			234 KN		NA CUI						0.15 /rad	U.UUU66 /m	140 mm			00	mm ckk			PT + EQ + DL						MN-m								4453 mm 6006			110 mm									~	-1374 492	
NYG																													4																			,	7		4	4 0	n m		(rad)	0.25	0.25
		cs. 2012								s		s	_	s	_	_	_			-								max			s	S	s .	÷.	ŧ.	F											5	Eff at _E u	114 inz		163652090 in4	87775676 in4			ล	7.81	8.03
Made by: hecked by:		esign Spe		0.15 kcf						58.43 kips		52.58 kips					63% Tpu	2			0.000201 /TL		0.47 in			39.17 IN		ing: Mux	Q + DL			61		~	4	и кір-п			-	iring		¥	C 26C	.9		4.33 in			41414 3 118110				1210084 1(sp	36	
Made by: Checked by:	aalic	AASHTO LRFD Design Specs. 2012															tpe = 0:					OD = 5.				el = 39		num Bear	PT + EQ + DL							= "				Location = Bearing									VC = 118			Iy = 1060					
11	1	AASHI		-		i	Diameter =			ш.	Ŧ	ш.	Ŧ	Fp max =	tp Jacking =		F					U						Maxin			_	> :	> :	Σ:	Σ					Locatio				F	Bottom =	Lateral =										9 22.60	
																		osses:																ion)																						-54.09	
	X III AX															Max	Max	Max					ម្ល											ver in tens															(J	-					Name	B6.1	B6.2
<i>SFOBB Peer Review</i> Pier E2 Capbeam	Deal III. IVIC													trand:	:	Ister with	considering	nsidering					spect to duct			oier cap:				num effect:			: 	>0 → Top fib	t														ottom corne						No.		2
Project: 55088 Pe Mooutski-MASTERS Subject: Per F2 C		0 Specifications:	1 Material properties:	 Concrete density: 	 Concrete 28-day compressive strength: 	Reinforcement strength:	- Prestressing steel strand:	Strand cross-sectional area:	Modulus of Elasticity:	Ultimate tensile strength:		Minimum yield strength:		Maximum stressing torce per strand:		% prestressing stress atter transfer with	% Effective prestressing stress considering	Effective prestressing strain considering	Wedge seating:	Friction coefficient:	vobble coefficient: - Tendons:	Duct diameter:	Location of tendon CG with respect to duct CG		2 Bearing location:	 Eccentricity between shart and top of pier cap: 	3 Loads:	- Case		- Loading effects at the section of maximum effect:	Axial (it <0 → Tension)	In-plane shear	Out-of-plane shear	In-plane-bending moment: (if >0 \rightarrow Top fiber in tension)	Out-of-plane bending moment	lorsion	4 Pier can section properties:		- Section No.		Dimensions:	Location from cap end	VVIath Dooth	Concrete cover				- Section properties:	Area Centroid (with respect to left bottom corner)		Moment of inertia	Continue modulus			- Longitudinal tendon locations:	*from section centerline	**from bottom of gross section
		492 492	634	634	634	634	778	228	77 -	822	5175	175	5175	د/ اد 	5317	1155	1125	5317	5317	1150	5317				(m)	164	313	462	1	761	910	1059	203	852	105	906	955	2104	2254	2403	2022	101 851	3000	3149	3299	3448	3597	3/46 3896	4045	4194	4344	4647	4791	4941	5090	5389	
8/8/2013 8/8/2013	-	458 4 1570 4																							mm) v (mm)	1) y v	22		7	-	-	י ב ג	- r	י ב גר	2 0	43	• 1	43 2	43 2	43	5 ¢ 2 ¢	4 2 2	9 4 9 0	43 3	43 33	49 W i	44 M (4 v V v V v	54 94	57 4	57	43 43	43 4	43	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	f 10	
r	v																								42	B																															
NYG		3 0.25 1 0.25						0.48							0.12		0.12				0.00				(04	(211 8	20	2	m	ņ	m	m r	- 1	- 1		× -		5	-					-	-	-				2				-		- 0	,
:/c		8.03	7.8	8.0	8.0	7.8	8.03		8.03	0.0	7.81	8.0	8.03	18./	0.0	8.03	8.03	0.0	18./	8.U3	7.81	190.96			Area (Area (III2) 63 28	55.37	55.37	23.7	23.73	23.73	23./3	15.57	75.37	2.00	13.51	13.51	13.51	13.51	13.51	0.2	12.51	13.51	13.51	13.51	13.5	13.51	13.51	13.51	51.4	19.78	13.51	13.51	13.51	13.51	79.10	-
Made by: Checked by:	NINA	36	36	37	37	<u>ب</u> %	ي ب	ي ب	<u>ا</u> ۳	37	36	37	37	ຊ ເ	<u>ا ۳</u>	ي ب	'n	37	સ !	n 1	n 8		.⊑	.⊑	Č	25 <mark>4</mark>	2 4	14	9	9	9	; م	₫;	4	<u>+</u> ;	± c	0 0	9	9	<u>ن</u> ی	00	o (c	<u>ں</u> ر	9	9	ں 0	6	ی م	o 0	1	ы	o (c	9	9	ש מ	- 2 2	i
		22.60	28.19	28.19	28.19	28.19	35.59	35.59	35.59	35.59	206.02	206.02	206.02	20.902	211.61	19.112	19.112	211.61	211.61	10.112	211.61		119.29	1.18	(ui)**/	y	12.31	18.19	24.07	29.95	35.82	41./0	4/.58	53.46	59.33	71.09	76.97	82.85	88.72	94.60	100.36	00.001 117.73	118.11	123.99	129.87	135.74	141.62	153 38	159.25	165.13	171.01	182 76	188.64	194.52	200.40	212.15	
		18.03 61.81	-52.83	-24.49	16.77	60.55	-53.46	21.62-	17.40	61.18	-54.09	-25.75	3.86	63.11	-39.29	-10.94	17.40	45.75	-52.83	-24.49	61.85		-0.58		(h) db		2.24	2.24	2.24	2.24	2.24	2.24	7.24	2.24	47.7	1 69	1.69	1.69	1.69	1.69	1.02	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	2.24	2.24	1 69	1.69	1.69	1.69	2.24	
	XPII	B6.3 B6.4	B5.1	B5.2	B5.3	B5.4	1.18 1.1	B4.2	B4.3	B4.4	T3.1	T3.2	T3.3	13.4	12.1	771	12.3	T2.4		1 1	T1.4		Centroids =	Eccentricity =	Name	R1 B1	B2	B3	B4	B5	B6	Р А	88	69 710	610 11	Ξ	M2	M3	M4	M5	0IN	M8	6W	M10	M11	M12	M13	M15 M15	M16	Ħ	T2	M18	M19	M20	12M		<u>!</u>
er Review apbeam	ning. Iniux	m 4	5	9	7	∞ «	ъ,	2;	= 1	12	13	14	15	9L ;	11	<u>8</u>	5	20	17 5	7 2	24		Ů	Ecce		- T	- 7	m	4	5	9	~ 0	x c	ъ.	2 :	= 2	: £	14	15	16	2 ¢	0 0	202	21	22	23	24	رع کر	27	28	29	0 1 2	32	33	34 25	98	ł
B Pe																										oris.																															
																									iterationati	בווו וסרמוו	ross section	13																													
Project: Subject:																									ainforcan	lianolilia	bottom of c	,																													
MODIESCI-MASTERS																									- Londitudinal rainforcament locations:	- rouðunnun -	**from	13	80																												

8882013 3 of 7	57 5538 57 5687							143 MN				936 MN-m 1 MN-m		6.2 MPa	35.2 MPa			-29.2 MPa	0%.CC										4233 mm	5780 mm																	
Checked by: Sheet No.:	218.03 20 79.10 223.91 19 75.15	19			0 00			Pu = 32218 kips			4827	Mux = 689788 kip-ft Muv = 463 kip-ft			Mux/Sx = 5.100 ksi		75%		21 % CC	Strain compatibility	Unconfined		2	Q = 0.85 Q = 0.65	fic= 8 ksi	0.004	ulay and Priestly, pag. 98	6422	b = 167 in	228			ey = 1714.90 in	47.32		Pc = 53630 kips Mc = 702752 kip- 0	70/704		₆₃₀ ≡ 0.00592	Tsi di Msi	. <u>E</u>	651 -96 -5185		96-		06-	00-
Pier E2 Capbeam LP C: Bearing: Mux max	37 T4 2.24 38 T5 2.24	T6		effects:	A 5 10 11 / 1h			3:															A.5.7.2.2			ï	* Seismic Design of Reinforced Concrete and Masonry Buildings, Paulay and Priestly, pag. 98	lgnore concrete cover for calculations at this strain level Flacticity: $\Delta 5~d~2~d-1$			Mnx								Effective initial prestressing strain:	ne yeff _{Ri} fsi	. E	18.27	18.2/ 0.00293 18.27 0.00293	18.27 0.00293	23.86 0.00324	23.86 0.00324	+7c00.0 00.02
MODUESKI-MASTERS Subject: Pier L AMODUESKI-MASTERS Content: <u>LP C:</u>				5 Check for axial and flexural force effects:	- Recistance factor:		- Loading effects:	1 Prestressing loading effects:			2 Net loading effects:		0 Total landja a director	o Total loading stresses.						- Analysis approach:	- Concrete behavior assumptions:		Stress distribution:		Compressive strength:	Ultimate compression strain:	* Seismic Design of	Ignore concrete c Modulus of Flasticity:	Effective section properties:		- Maior-axis bending resistance: Pnx. Mnx		Eccentricity: Neutral avis denth:			Concrete forces:		Tendon forces:	Effective initial	No. Name		1 B6.1	2 B0.2 3 R6.3		5 B5.1		
8/8/2013 4 of 7																																															
	-5393 -5726	-5726 -5726	-5726	15028	15446 15446	15028	16448	16448 16448	16440 16448	16004	16448	16448 16004	125840			kin-ft	35335	29291	2/664 11159	10461	9764 8531	15327	11256	7693	403/ 510	12	-361	-136	-738	-616	0/2-0	397	794	1588	1984	2381 7778	12088	5231	3969 4366	4763	5160	555/ 5953	37195	39520	39752	41961	
Checked by: Sheet No.:	- 6- 83 83	ဆို အို	9 œ	88	80 8	88	94	94	94 04	64	94	94 94			÷	⊒. ਰ	-112	-106	-100 -94	88-	-82 -76	-71	-65	ខ្មុំ	50- 74-	41	-35	67-	-18	-12	ဂု ဝ	9	12	24	29	35	41	23	59 65	71	76	82	94	100	106	112	
Ċ	720 833	833 833	833	2051	2108 2108	2051	2111	2111	2111	2054	2111	2111 2054	33984		÷	l SI kins	-3797	-3322	-3322 -1424	-1424	-1424 -1340	-2608	-2089	-1571	-130	2 4	123	376	502	629 755	دد/ 810	810	810 810	810	810	810	3085	1187	810 810	810	810	810 810	4746	4746	4509	4509	
max	0.00324 92.13 0.00364 103.71				0.01301 262.59	0.01301 262.59	0.01331 262.91					0.01331 262.91 0.01331 262.91				Ri Ksi	-0.00388 -60.00		-0.00324 -60.00 -0.00292 -60.00	_	-0.00227 -60.00 -0.00195 -56.46	-0.00162 -47.09		-0.00098 -28.36			0.00031 9.09			0.00161 46.55		0.00257 60.00			0.00387 60.00		0.00483 60.00		0.00548 60.00			0.006// 60.00			0.00806 60.00		
apbeam Bearing: Mux max	23.86 31.26	31.26 31.26	31.26	201.69	201.69 201.69	201.69	207.28	207.28 97.705	207.28 207.28	207.28	207.28	207.28 207.28			5	уе п in	2.11	7.98	13.86 19.74	25.62	31.49 37 37	43.25	49.13	55.00	60.88 66 76	72.64	78.51	90.77	96.15	102.02	113.78	119.66	125.53	137.29	143.17	149.04 15.4 02	160.80	166.68	178.43	184.31	190.19	196.07 201 94	207.82	213.70	219.58	225.45	01.014
Pier E2 Capbeam LP C: Bearing	B5.4 B4.1	B4.2 B4.3	B4.4	T3.1	13.2 T3.2	T3.4	T2.1	77.2 2 CL	C.21	T1.1	T1.2	T1.3 T1.4		S:		Name	B1	B2	83 B4	B5	B6 R7	88 88	B9	B10	18 1	M2	Μ	M5	M6	7M 200	8M M9	M10	M11 7	M13	M14	M15 M16	T1	12	M18 81M	M19	M20	12M 72M	112	T4	T 5	τc	2
MODIESCI-MASTERS Subject:	80 60	10	12	13	14	<u>1</u>	17	18	61	21	22	23 24		Reinforcement forces:	ż	NO.	-	2	n 4	5	。 13	∑∞ 31		10	= 6	1 1	14	c 4	17	18	20	21	22	24	25	26 77	28	29	30	32	80 1 3	34	36	37	38	30	3

882013 882013 5 of 7	28 MN 1239 MN-m 1.00		1063 MN 31 MN-m 1.00	133 MN 21 MN 1095 MN NA
Made by: NYG Checked by: Sheet No.:	6392 kips 913429 kip-ft 1714.95 in 1.00	1.15 in 254.97 in 165.73 in 165.73 in 165.73 in 256452 kips 9887 kip-ft 61 klp-ft 54 klp-ft 54 klp-ft 54 1092 53 1092 53 11687 -17 -2561 61 -2648 53 4147 53 11687 -17 -2841 -17 -2841 -17 -2843 -17 -2843 -18	13029 238828 kips 22917 kip-ft 1.15 in 1.00	Ag = 29818 kips Pu = 4827 kips Po = 246120 kips Load Contour Method Pr = NA Kips WP = NA NA
Sh de ≤	Pnx = Mnx = 9 ey = 1 ey req/ ey res =	exa exa fsi fsi fsi fsi fsi fsi fsi fsi	17624 Pny = Mny = ex = t req/ ex res =	0.10 _d P ^r cAg = 7 Pu = 7 Po = 2 Load Coi
5FOBB Peer Review Pier E2 Capbeam LP C: Bearing: Mux max		<i>g resistance: Pny, Mny</i> is depth: Corces: Effective initial prestressing strain: No. Name xeff sel 1 B6.1 137.42 0.00408 2 B6.2 109.08 0.00364 3 B6.3 109.08 0.00364 3 B6.4 21.52 0.00366 5 B5.1 109.08 0.00366 6 B5.2 109.08 0.00366 11 B8.4 22.75 0.00366 12 B6.4 22.75 0.00366 13 T3.1 135.76 0.00366 13 T3.1 135.79 0.00407 14 T3.2 109.08 0.00366 12 T3.4 22.75 0.00226 13 T3.1 135.76 0.00366 13 T3.1 135.76 0.00366 12 T3.4 22.75 0.00226 13 T3.1 135.76 0.00366 13 T3.1 135.76 0.00366 12 T3.2 109.08 0.00366 13 T3.1 135.76 0.00366 13 T3.1 135.76 0.00366 13 T3.1 135.76 0.00366 13 T3.1 135.76 0.00366 13 T3.1 35.76 0.00366 13 T3.3 20.22 0.00366 13 T1.3 20.0136 14 T3.2 109.08 0.00366 15 T3.4 22.75 0.00366 16 T3.4 22.75 0.00366 17 T3.2 109.08 0.00366 18 T3.2 109.08 0.00366 19 T3.3 20.22 0.00366 20 T1.1 35.76 0.00366 21 T1.1 135.76 0.00366 22 T1.2 3 20.73 0.00366 23 T1.3 20.73 0.00366 23 T1.3 20.73 0.00366 24 T1.4 7.72 0.00366 26 T1.2 107.82 0.00366 27 T1.2 107.82 0.00366 28 T1.2 107.82 0.00366 29 T1.2 107.82 0.00366 20 T1.2 107.82 0.00366 20 T1.2 107.82 0.00366 20 T1.2 107.82 0.00366 20 T1.2 107.82 0.00366 21 T1.1 100.88 0.00366 22 T1.2 100.88 0.00366 23 T1.3 20.01366 24 T1.4 0.00366 25 T1.2 107.82 0.00366 26 T1.2 107.82 0.00366 27 T1.2 107.82 0.00366 28 T1.2 107.82 0.00366 20 T1.2 107.8		<i>lexure check:</i> A.5.7.4.5 Minimum axial load to be considered as a column: Factored axial load: Nominal axial resistance: Method to check biaxial flexure: Reciprocal Load Method:
Project: MODEXI-MASTRIS Subject: Content:	Resultant forces:	 Minor-axis bending resistance: Pny, Mny Eccentricity: Neutral axis depth: Concrete forces: Tendon forces: Tendon forces: No. Name 1 86.1 2 86.3 3 86.3 85.1 9 85.1 11 86.4 12 84.4 13 73.1 14 82.3 15 83.4 16 84.3 17 85.4 16 73.4 17 72.1 18 72.2 16 73.4 17 72.1 18 72.2 19 72.3 10 84.3 16 73.4 17 72.1 18 72.2 19 72.3 10 84.3 11 72.1 13 73.1 14 72.2 15 73.4 16 73.4 17 73.2 17 73.2 17 73.2 17 73.2 17 73.2 17 13.2 17 13.2 17 14.2 18 14.2 18 14.2 17 14.2 17 14.2 18 14.2 17 14.2 	Resultant forces:	 Biaxial flexure check: A.5.7.4.5 Minimum axial load to be consid Factored axial load: Nominal axial resistance: Method to check biaxial flexure: Reciprocal Load Method:
NYG 882013 882013 6 of 7	0.86	25 mm 150 mm hear checking 26 MN 72 MN 72 MN 88 MN	NW O O	57 MNN 51 MNN
Made by: Checked by: Sheet No.:	Mux/Mrx = 0.84 Muy/Mry = 0.02 IE = 0.86 OKI	Tete:: $A_{CD} = 0.00$ Tete:: $A_{CD} = 41414$ in 2 a = 5.91 in $b = 37537$ in 2 b = 7847 in $255b = 7847$ in $256Tr = 109830 kip-ft = 0.01Tr = 0.00 kip-ft = 0.01Tr = 0.00 kip-ft = 0.01Tr = 0.00 kip-ft = 0.01AD = 0.00 Kips = 0.00AD = 0.00 kips = 0.00$		236 126 0.00000 4.800 11513 0.00
Project: <i>SFOBB Peer Review</i> Subject: <i>Pier E2 Capbeam</i> Content: <u>LP C: Bearing: Mux max</u>	Load Contour Method: 6 Check for shear and torsional force effects:	 <i>A.5.5.4.2</i> <i>Torsional effects:</i> Toral area enclosed by outside perimeter of the concrete section:: Diameter of exterior stirrups: Diameter of exterior stirrups: Spacing of exterior stirrups: Spacing of exterior stirrups: Torsional cracking moment: Torsional cracking moment: Torsional cracking moment: Torsional cracking moment: Torsional cracking moment: Torplane shear Torplane shear Textrups: Torplane shear Textrups: Torplane shear resistance approach: Torplane strains: Torsional cracking min. transverse reinforcement: Torsion of reinforcement: Torsion of reinforcement: Torsion of reinforcement: Torsion of reinforcement: Tork and for the strains: Torsion of reinforcement: Torsion of reinforcement: Torsion of reinforcement: Torsion of reinforcement: Torsion of reinforcement:	 Out-of-plane shear: Factored load: Prestressing force in direction of Vu: In-plane concrete shear resistance approach: 	Effective width Minimum Shear depth: Net tensile Strains: Parameter fjassuming min. transverse reinforcement: In-plane concrete shear resistance:

8/8/2013	a a a c a c a c a c a c a c a c a c a c		Metric 24 KN/m3 55 MPa		15 mm 140 mm2	0	1858 MPa	234 KN	195 KN		10 mm 0.15 /rad 0.00066 /m	140 mm 12 mm	9 <mark>95</mark> mm	PT + EQ + DL	124 MN 50 MN 0 MN 312 MN-m 3 MN-m 0 MN-m			5058 mm 4553 mm 6000 mm 110 mm 110 mm 110 mm			x (mm) y (mm) -1374 492 -654 492 458 492 1570 492
NYG		012																. <u>ב</u> . <u>ב</u>	2 5		
		Specs. 2(kof Ke	<u>s</u> :s	u 2	ksi	ki ja	kips fnu	kips four	tpu fpu	in /ft	으. 고.	.⊆	Aux min NL	kips kips kip-ft kip-ft			ft 167 228 in 228	Eff at ₁ u 37924 114 82	163652090 87775676 1438326 1053377	Area (in2) 7.81 8.03 8.03 7.81
Made by:	Sheet No.:	FD Design	0.15 8	o 6	0.60	28478	269 269	52.58 an%	43.82 75%	67% 63% 0.00592	0.39 0.15 0.000201	5.51 0.47	39.17	ו Bearing: Mu PT + EQ + DL	27908 11341 0 -671357 2014 0		1 Bearing	16.59 175.3 236.2 4.33 4.33 4.33	Gross 41414 118.110 88	192573235 106074258 1630453 1210084	Strands 36 37 37 36
ť	יי כ	AASHTO LRFD Design Specs. 2012	- 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- + - -	Diameter = A =	Ep =	= ndj	Fpy =	Fp max =	fpt = fpe = fpe =		OD = Z =	e1 =	Maximum <mark>Bearing: Mux min</mark> PT + EQ + DL	Pu = Vuy = Vux = Nux = Muy = Tu =		Location =	x = B = H = Top = Bottom = Lateral =	A = yc =	S <u>S A</u> × 1	y**(in) 22.60 22.60 22.60
									+	losses: losses: losses:					(u						x* (in) -54.09 -25.75 18.03 61.81
	nin									Max Max		g			r in tensic				_		Name B6.1 B6.2 B6.3 B6.4
SFOBB Peer Review	rier ez capbean LP C: Bearing: Mux min		. <u>.</u> +						er strand:	transfer with ress considering n considering	•	: Duct diameter: Location of tendon CG with respect to duct CG	of pier cap:	:	effects at the section of maximum effect: Axial (tr 40 → Tension) In-plane shear Dut-of-plane bending moment: (if >0 → Top fiber in tension) Out-of-plane bending moment Torsion				oroperties: Area entroid (with respect to left bottom corner)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Content: <u>LP C</u>		iles: :ompressive strend	rength:	sing steel strand: Strand cross-sectional area:	Modulus of Elasticity:	oltimate tensile strengtn:	Minimum yield strength:	Maximum stressing force per strand:	% prestressing stress after transfer with % Effective prestressing stress considering Effective prestressing strain considering	Wedge seating: Friction coefficient: Wobble coefficient:	neter: of tendon CG wit.	Bearing location: Eccentricity between shaft and top of pier cap:		effects at the section of maximum effect: Axial ($t < 0 \rightarrow Tension$) In-plane shear Out-of-plane shear In-plane-bending moment: (if $>0 \rightarrow Top$ fi Out-of-plane bending moment Torsion	properties:		<i>ons:</i> Location from cap end Width Depth Concrete cover:	s: (with respect to le	Moment of inertia Section modulus	<i>dinal tendon locations:</i> *from section centerline **from bottom of gross section
	MODIESIO-MASTERS	0 Specifications:	 Material properties: Concrete density: Concrete 28-day commercium etramoth; 	Reinforcement strength:	 Prestressing steel strand Strand cross-sect 	Modulus	Ultimate	Minimurr	Maximun	% prestre % Effecti Effective	Wedge seating: Friction coeffici Wobble coeffici	- Lendons: Duct diameter: Location of ten	2 Bearing location: - Eccentricity betwe	3 Loads: - Case	- Loading effects at the Axial (if ≺0 → In-plane shear Out-of-plane s In-plane-bend Out-of-plane I Torsion	4 Pier cap section properties:	- Section No.	- Dimensions: Location from c Width Depth Depth Concrete cover:	- <i>Section properties:</i> Area Centroid (v	Moment of inert Section modulus	 Longitudinal tendon locations: "from section centerline "from bottom of gross sect

8/8/2013 8/8/2013	2 of 6	-1342 634 -622 634				442 822		-15/4 51/5 -654 5175							66 5317 1571 5317		m) y (r	57 164 57 313		57 611			57 1209				43 1955 43 2104			43 2701		43 3000 43 3149				43 3896						43 5090	43 5239 E7 E200		57 5687 57 5837
NYG		0.43 0.43	0.43	0.43	0.48	0.48	0.48	0.21	0.21	0.21	0.12	0.12	0.12	0.00	0.00	0.25	Ū																												
		7.81 8.03	8.03	7.81		8.03	8.03	7.01 8.03	8.03	7.81	8.03 8.03	8.03	8.03 7.81	8.03	8.03 7.81	190.96	Area (in2)	03.20 55 27	55.37	23.73	23.73 23.73	23.73	55.37	75.27	55.37	13.51	13.51 13.51	13.51	13.51	13.51	13.51	13.51 13.51	13.51	13.51	13.51	13.51	13.51	19.78 19.78	13.51	13.51	13.51 13.51	13.51	13.51	79.10	75.15 75.15
Made by: Checked by:	Sheet No.:	36 37	37	36	i 6	37	3/ 20	37	37	36	<u>م</u> ۲	37	37 36	37	37 36	.5 .5	Qty	₽ ₽	1 1	9	ە م	9	14	<u>4</u> 5	14	9	ى م	9	99	o o	9	ی م	9 9	o u	ى م	9	9 Ç	<u>n</u> n	9	9 1	ی م	9 9 9	م م	2 2	19
0		28.19 28.19	28.19	28.19 25 50	35.59	35.59	20.05 CA 20C	206.02	206.02	206.02	211.61	211.61	211.61 211.61	211.61	211.61 211.61	119.29 1.18	y**(in)	10 21	18.19	24.07	35.82	41.70	47.58	50 23	65.21	71.09	/6.9/ 82.85	88.72	94.60 100.49	106.36	112.23	118.11	129.87	135.74	141.62	153.38	159.25	171.01	176.89	182.76	188.64	200.40	206.27	218.03	223.91 229.78
		-52.83	16.77	60.55 -52 A6	-25.12	17.40	61.18	-25.75	3.86	63.11	-39.29	17.40	45.75 52.83	-24.49	2.60 61.85		db (in)	47.7	2.24	2.24	2.24	2.24	2.24	47.7	2.24	1.69	1.69 1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1 69	1.69	1.69 1.69	2.24	1.69	1.69	1.69	1.69	1.69 1.54	2.24	2.24 2.24
	ıx min	B5.1 B5.2	B5.3	B5.4 B.1	B4.2	B4.3	124.4	T3.2	T3.3	T3.4	1.21	T2.3	T2.4 T1.1	T1.2	T1.3 T1.4	Centroids = Eccentricity =	Name	2 6	83	B4	85 B6	B7	88	84 R10	B11	μ	Z Z	Μ4	M5 M6	M7	M8	M10	M11	M12	M13 M14	M15	M16 T1	= P	M17	M18	02M	M21	M22 5	14	T5 T6
er Review obeam	Bearing: Mux min	5 9	7	œ ٥	° 5	= :	7 0	5 4	15	16	7 81	5 6	20	22	23 24	- u	No.	- ~	4 M	4	n u	7	ω c	5 v	2 =	12	21 14	15	16	18	19	07 12	22	53	25 25	26	27	87 67	30	31	7 8	34	35	37	38 36
SFOBB Peer Review Pier E2 Capbeam	LP C: F																locations:	contion	201101																										
Project: Subiect:	Content:																iforcement	##from hottom of arors costion																											
	MODI ESIG-MASTERS																- Longitudinal reinforcement locations:	tod mont **			13	33																							

NYG 882013 882013 3 of 6			143 MN	et 7			-34.1 MPa	0.1 MPa -29.3 MPa 5202	38.6 MPa	/0%								4233 mm	5780 mm																
Made by: Checked by: Sheet No.:		0:00	32218	-1551 -1551 27908	Muy = 2014 kip-ft	Pir/∆ = 0.674 ksi	4.941	Muy/Sy = 0.020 ksi Max = -4.247 ksi 5204 415		/0% 1'C	Strain compatibility	Unconfined	5	n = 0.65				E = 3422 KSI b = 167 in	228		ey = -288.68 in	c = <mark>75.36</mark> in a = 48.98 in		исс = 413025 kip-ft		_{eto} = 0.00592	Ë	kips in	2052	2109 96	2052 96 2049 90	2106 2106	2049 90 2102 83	2102	2102 83 734 -88
Project: SFOBB Peer Review Subject: <u>Pier E2 Capbeam</u> Content: <u>LP C: Bearing: Mux min</u>	5 Check for axial and flexural force effects:	- Resistance factor: A.5.10.11.4.1b	- <i>Loading effects:</i> 1 Prestressing loading effects:	2 Net loading effects:		3 Total loading stresses:					- Analysis approach:	- Concrete behavior assumptions:	Stress distribution: A.5.7.2.2		Compressive strength:	UTUITIALE COMPLESSION SUBILIT. * Seismic Design of Reinforced Concrete and Macony Buildings, Paulay and Priechly, pag. 98	Ignore correte cover for calculations at this strain level	Modulus of Elasticity: A. 5.4.2.4-1 Effective section properties:	-	- Major-axis bending resistance: Pnx, Mnx	Eccentricity:	Neutral axis depth:		Concrete Torces:	Tendon forces:	Effective initial prestressing strain:	No Name And Share	indite yet bei	B6.1 B6.2	B6.3 18.27 0.01303	B6.4 18.27 0.01303 B5.1 23.86 0.01274	B5.2 23.86 0.01274 B5.3 23.86 0.01274	23.86 0.01274 31.26 0.01234	B4.2 31.26 0.01234 B4.2 31.26 0.01234	31.26 201.69
NYG 88/2013 88/2013 4 of 6																																	174 MN-m 1274 MN-m	1.00	
Made by: Checked by: Sheet No.:	754 754	734 -88 686 -94 696 04	686 -94 686 -94 686 -94				5.≘	3797 112 35335 3322 106 29291	94	88 88	76	65	22.23	47 41	35	24	810 18	810 IZ	799 0 0 677 -6 -331	554 -12 432 -18	310 -24	188 -29 66 -35	-57 -41	-680 -4/ -441 -53	-423 -59 -545 -65	-667 -71	-790 -76 -87 -82	-810 -88	-4746	-4509 -106	-		Pnx = 39063 kips Mnx = 939529 kip-ft		
SFOBB Peer Review Pier E2 Capbeam LP C: Bearing: Mux min	201.69 0.00330 201.69 0.00330	201.69 0.00330 207.28 0.00300 207.29 0.00300				vaff	in in	B1 2.11 0.00797 60.00 B2 7.98 0.00766 60.00	19.74 0.00703	25.62 0.00672 31.49 0.00641	37.37 0.00610	43.23 0.00547 49.13 0.00547	55.00 0.00516 60.88 0.00485		78.51 0.00391	90.27 0.00329	96.15 0.00298	102.02 0.00235 107.90 0.00235	19 113.78 0.00204 59.15 10 119.66 0.00173 50.10	125.53 0.00142 131.41 0.00110	137.29 0.00079	14 143.17 0.00048 13.91 15 149.04 0.00017 4.86	154.92 -0.00014	T2 166.68 -0.00077 -22.28	178.43 -0.00139	-0.00170	190.19 -0.00202 196.07 -0.00233	201.94 -0.00264		219.58 -0.00358				, even and a second sec	
Project: <i>SFOB</i> Subject: <u>Pfer 1</u> ADDL360-MARTINS Cuntent: <u>PFC</u>				22 23 24	Reinforcement forces:	ome N		- 0 0	n 4 i	۵۵ و				12		c1 16			20 M														Resultant forces:		

NYG 882013 882013 5 of 6																								1209 MN	27 MN-m	1.00		133 MN 124 MN 1188 MN		NA	0.91
Made by:		ex = 0.87 in c = 255.67 in			a;e= 0.00592	Tsi di Msi	kips 906	830 26	674 503	902 53	826	507 -61	929 53 878 75	676 -17	519	830 26	724 498	879 39	777 11 709 676 -17 -980	574 -46 -	902 826	729 -3	503 17604	271765 ki	Mny = 19615 kip-ft ex = 0.87 in	1.00		0.10, FCAg = 29818 kips Pu = 27908 kips Po = 267050 kips	Load Contour Method	Pr= NA Kips Pu/Pr= NA NA	0.79 0.11 0.91
Project: 5F0BB Peer Review Subject: Pier E2 Capbeam Content: LP C: Bearing: Mux min	- Minor-axis bending resistance: Pny, Mny	Eccentricity: Neutral axis depth:	Concrete forces:	Tandon forcas:	Effective initial prestressing strain:	l R	IN KSI 1 R6.1 137.42 0.00407 116.03	B6.2 109.08 0.00363	B6.3 65.30 0.00295 B6.4 21.52 0.00226	136.16 0.00405	6 B5.2 107.82 0.00361 102.84 7 BE3 66.66 0.0037 94.46	B5.4 22.78 0.00228	B4.1 136.79 0.00406 B4.2 108.45 0.00362	B4.3 65.93 0.00296	12 B4.4 22.15 0.00227 64.67 13 T3 1 12 0.00007 115 02	109.08 0.00363	15 T3.3 79.47 0.00317 90.21 16 T3.4 20.22 0.00312 63.81	T2.1 122.62 0.00384	18 T2.2 94.27 0.00340 96.81 19 T2.3 65.93 0.00296 84.18	T2.4 37.58 0.00251		0.00319		Resultant forces:		ex	- Biaxial flexure check: A.5.7.4.5	Minimum axial load to be considered as a column: Factored axial load: Nominal axial resistance:	Method to check biaxial flexure:	Reciprocal Load Method:	Load Contour Method:
6 01 6			25 mm	150 mm		34 MN-m 0 MN-m		82 MN-m 0.00			50 MN								NIM C7	71 MN				87 MN 0.58			NIM 0				57 MN 51 MN 0.00
Made by: NYG Checked by: Sheet No.:		ф = 0.90		s = 5.91 in Ao = 37537 in2	784 109830	0.25 ₀₁ Tcr= 24712 kip-ft Tu= 0 kip-ft	ects DO NOT need to be considered for shi	untre 60279 kip-ft 82 Tuntre 0.00 OKI 0.00			Vuy = 11341 Kips	Vp = 2405 Kips	Method = 2 A.5.8.4.3.2	bv = 175 in dv = 187 in	/01	🛃 average = 0.00195	$\theta = 35.8$	1.948	VC = 2098 NIPS	15986		, ru	»»	vu _{ci} vn = 19516 Kips Vu _{ci} vn = 0.58 OKI		c	Vp = 0 Kips	Method = 2 A.5.8.4.3.2 bv = 236 in dv = 126 in	🚓 average = 0.00000	R= 4.800	Vc = 12792 Kips ₄ Vc = 11513 Kips Vu _{rc} Vc = 0.00 OKI
			iotal area enclosed by outside perimeter of concrete: Dutside perimeter of the concrete section: Diameter of exterior stirrups:				sional eff€											G arameter R assuming min. transverse reinforcement:												Parameter Aassuming min. transverse reinforcement:	

	Project: Subject:	SFOBB Peer Review Pier E2 Capbeam	r Review obeam			S	Made by: Checked by:		NYG	8/8/2013 8/8/2013	
MODIESIO-MASTERS	Content:	LB: B	Bearing: Pu min	6		S	Sheet No.:			1 of	f 6
0 Specifications:						AASHTO LRFD Design Specs. 2012	⁻ D Design	Specs. 201;	2		
 Material properties: Concrete density: Concrete 28-day compressive strength: Reinforcement strength: 	s: npressive nath:	strength:				f c = f c =	0.15 8 60	হা হা হ		Metric 24 55 414	KN/m3 MPa MPa
Prestressing steel strand	rand:					Diameter =	0.60	ē.≘.9		15	n m m
Modulus of Elasticity: Illtimate togelo strongth:	Elasticity	al al ea. r: noth:				= = = =	28478 28478 28478	ksi kin		196500	MPa
Minimum vield strength:	ield stren	ath:				fpu = Fpu =	269 52.58	ksi kips		1858 234	MPa
Maximum	tressing f	Maximum stressing force per strand:	and:		·	fpy = Fp max =	90% 43.82	fpu kips		195	N K
% prestressing stres % Effective prestress Effective prestressir Wedge seating: Friction coefficient: Wobble coefficient:	ing stress prestress estressing ting: fficient: efficient:	% prestressing stress after transfer with % Effective prestressing stress considering Effective prestressing strain considering wedge seating: Friction coefficient: Wobble coefficient:	fer with onsidering sidering	Max Max Max	t losses: losses: losses:	tp jacking = fpt = fpe = *∞ * = * = * = *	75% 67% 63% 0.00592 0.39 0.15	tpu fpu in /rad /ft		10 mn 0.15 /rav 0.00066 /m	mm /rad
Tendons: Duct diameter: Location of ten	ter: tendon (CG with res	: Duct diameter: Location of tendon CG with respect to duct CG	J		0D = Z =	5.51 0.47	드 .드		140 12	u m m
 2 Bearing location: - Eccentricity between shaft and top of pier cap: 	n shaft ar	nd top of pi	er cap:			e1 =	39.17	. <u>=</u>		995	mm
3 Loads: - Case			2			Maximum <mark>Bearing: Pu min</mark> PT + EQ + DL	ו <mark>Bearing: Pu</mark> PT + EQ + DL	u min N	<u>н</u>	PT + EQ + DL	Б
 Loading eners as the section or maxim Axial (it <0 > Tension) In-plane shear Out-of-plane shear In-plane-bending moment: (if > Out-of-plane bending moment. 	<i>Te sectio</i> → Tensio ear ie shear nding mc ne bendin	Avial (if <0 → Tension) Avial (if <0 → Tension) In-plane shear In-plane-bending moment: (if >0 → Top fil Out-of-plane bending moment Dort-of-plane bending moment	Axial (tr <0 → Tension) Axial (tr <0 → Tension) In-plane shear In-plane-bending moment: (if >0 → Top fiber in tension) Out-of-plane bending moment Torsion	in tensic	(u	Pu = Vuy = Vux = Mux = Tu =	46182 15932 0 588677 2014 0	kips kips kip-ft kip-ft		206 71 0 3 3	un MN MN MN MN MN MN MN
4 Pier cap section properties:	operties:										
Section No.						Location =	1 Bearing				
- <i>Dimensions</i> : Uncation from cap end Width Depth Concrete cover:	om cap er vver:	p				x = B = H = Top = Bottom = Lateral =	16.59 175.3 236.2 4.33 4.33 4.33	ft 167 228 in in	. <u> </u>	5058 4453 6000 110 110 110	
<i>Section properties:</i> Area Centroid (with res Moment of inertia Sertion modulus	ith respe inertia	ct to left bo	<i>Sroperties:</i> Area Centroid (with respect to left bottom corner) Moment of inertia			= = = = = = = = = = = = = = = = = = =	Gross 41414 118.110 88 192573235 106074258	Eff at ₁₁ : 37924 114 83 163652090 87775676	in in 2 14 tri 14 tri 1		
	5					sy =	1210084	1053377	in3		
 Longitudinal tendon locations: *from section centerline **from bottom of grass section 	<i>n locatior</i> centerline n of gross s	<i>75:</i> ection	N - 2 m 4	Name B6.1 B6.2 B6.3 B6.4	x* (in) -54.09 -25.75 18.03 61.81	y**(in) 22.60 22.60 22.60 22.60	Strands 36 37 37 36	Area (in2) 7.81 8.03 8.03 7.81	ry (rad) 0.25 0.25 0.25 0.25	x (mm) y (mm) -1374 492 -654 492 458 492 1570 492	y (mm) 492 492 492 492

	9	634	34	634	322	822 CC8	228	175	175	175	175	317	317	5317	317	5317 5317	317		(mc	104 312	162	511	761 010	059	1209	358	207 656	806	955	104 254	403	552	/01 851	000	3149	448	597	3746 2006	045 045	194	4344	4493 4642	791	4941	5090 5739	389	538	5837 5837
8/8/2013 8/8/2013	2 of	-1342																	m) y (r		21			, L						43 43 2 2				5 6 1 w								43 43 4			43 5 5			
NYG		0.43	0.43	0.43	0.48	0.48	0.48	0.21	0.21	0.21	0.21	0.12	0.12	0.12	0.00	0.00	0.00	c7.0																														
		7.81	8.03 8.03	7.81	8.03	8.03	8.03	7.81	8.03	8.03	7.81	x.02 0.02	8.03	8.03	7.81	8.03 8.03	7.81	96.061	Area (in2)	63.28 55 37	55.37	23.73	23.73	23.73	55.37	55.37	55.37	13.51	13.51	13.51	13.51	13.51	13.51	13.51	13.51	13.51	13.51	13.51	13.51	51.42	19.78	13.51	13.51	13.51	13.51 13.51	79.10	79.10	75.15
Made by: Checked by:	Sheet No.:	36	<u>م</u> کر	36	37	37	6 Le	38	37	37	8 1	2 C	n Er	37	36	37	36	.드 .드	Qty	₽ 5	4	9	9 4	ە ە	14	4:	4 <u>5</u>	0 ا	9	ى م	o 0	9	ی م	9 9	ω u	ە ە	9	0 0	0 0	. <u>m</u>	ы	ی م	o 0	9	ي و	50	20	<u>e</u> 6
0		28.19	28.19 28.19	28.19	35.59	35.59	35.59	206.02	206.02	206.02	206.02	211.61	211.61	211.61	211.61	211.61 211.61	211.61	119.29 1.18	y**(in)	12 31	18.19	24.07	29.95 25 00	41.70	47.58	53.46	65.23 65.21	71.09	76.97	68.28 77	94.60	100.48	106.36	118.11	123.99	135.74	141.62	147.50	159.25	165.13	171.01	182.89	188.64	194.52	200.40	212.15	218.03	229.78
		-52.83	-24.49	60.55	-53.46	-25.12	61.18	-54.09	-25.75	3.86	63.11	-39.29	17.40	45.75	-52.83	-24.49 2.60	61.85	-0.58	db (in)	47.7	2.24	2.24	2.24	2.24	2.24	2.24	47.7 47.7	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	2.24	2.24	1.69	1.69	1.69	1.69 1.69	2.24	2.24 2.24	2.24
	Pu min	B5.1	B5.2 R5.3	B5.4	B4.1	B4.2	84.4 B4.4	T3.1	T3.2	T3.3	13.4 1	1.21	12.3	T2.4	T1.1	T1.2	T1.4	Centroids = Eccentricity =	Name	2 2	8 8	B4	B5 PC	87 B7	88	B9	810 811	ΞΣ	M2	M4 M4	M5	M6	/ W 8 M	6W	M10	M12	M13	M14	M16	F	2	M18	M19	M20	M21 M22	ц Ц	T4	T6
SFOBB Peer Review Pier E2 Capbeam	Bearing: Pu	ы	0 -	- 00	6	6 :	1 1	: 1	14	15	16	11	61	20	21	22 22	24	Ξġ	°.	- ~	ı m	4	in u	0	∞	б;	2 €	12	13	14	16	17	8 0	20	21 5	7 22	24	25	27	58 58	52	g	5 25	33	34	9 %	37	9 E
	Content: LB:																		Longitudinal reinforcement locations:	arore contion																												
																			nal reinforce	##from hottom of arors cortion																												
MOD, ISIG-MASTERS	NE VACTO																		- Longitudir	***			13	36	j																							

NYG 882013 882013 3 of 6			~	-4 MNN-TH -2 MN-TH 62 MN	794 MN-m 1 MN-m		7.7 MPa 29.9 MPa			-22.3 MPa 40%									4233 mm	5780 mm															
Made by: Checked by: Sheet No.:		0:00	32218	-3171 -1551 13964	Mux= 585506 kip-ft Muy= 463 kip-ft	L	Pu/A = 1.115 Ksi Mux/Sx = 4.333 ksi		68%	Min = -3.237 ksi 40% f'c	Strain compatibility	llaconfinod	Unconnnea	Rectangular	0.65	ftc= 8 ksi	gs, Paulay and Priestly, pag. 98		b = 167 in	228			c = <mark>86.71</mark> in a = 56.36 in	Pc = 63872 kips	Mc = 455612 kip-ft		2600.0 =odd	Tsi di kine in	616 616	633 -96 633 -96	616 -96 673 -90	692 -90 697 -00	673 -90 770 -83	1/ //0 -83 -5293 17 770 -83 -5293 17 770 -83 -5293	2029 88
Project: 5F0BB Peer Review Subject: Pier E2 Capbeam Content: <u>LB: Bearing: Pu min</u>	5 Check for axial and flexural force effects:	- Resistance factor: A.5.10.11.4.1b	- Loading effects: 1 Prestressing loading effects:	2 Net loading effects:		3 Total loading stresses:					- Analysis approach:	Concrete holonities accumutiones	- Concrete benavior assumptions:	Stress distribution: A.5.7.2.2		Compressive strength: Ultimate compression strain:	* Seismic Design of Reinforced Concrete and Masonry Buildings, Paulay and Priestly, pag. 98	Ignore concrete cover for cakulations at this strain level Modulus of Elasticity: A.5.4.2.4-1	Effective section properties:		- Major-axis bending resistance: Pnx, Mnx	Eccentricity:	Neutral axis depth:	Concrete forces:		Tendon forces:	Effective initial prestressing strain:	No. Name yeff 🔊 fsi in bei	B6.1 18.27 0.00277	B6.2 B6.3	B6.4 18.27 0.00277 B5.1 23.86 0.00303	B5.2 23.86 0.00303 B5.3 23.86 0.00303	23.86 0.00303 31.26 0.00337	B4.2 31.26 B4.3 31.26 B4.4 31.26	T3.1 201.69 0.01123
NYG 8:82013 8:82013 4 of 6																																	105 MN 1341 MN-m	1.00	
Made by: Checked by: Sheet No.:	259.79 2086 88 259.79 2086 88	260.33 2090 94 260.33 2090 94 260.33 2090 94	260.33 2090 94 260.33 2090 94 260.33 2090 94	0.01149 260.33 2094 94 1524/ 0.01149 260.33 2090 94 16287 0.01149 260.33 2090 94 16287 0.01149 260.33 2034 94 15847	33144 128218	<u>-</u>	🔊 tsi Tsi di Msi ksi kips in kip-ft	-60.00 -3797 -112 -60.00 -3322 -106	-3322 -100	-60.00 -1424 -94 -60.00 -1424 -88	-60.00 -1424 -82 -60.00 -1424 -76	-3219 -71	-50.28 -2/84 -65 -42.42 -2349 -59	-34.55 -1913 -53 -26.69 -360 -47	-18.83 -254 -41	-148 -35 -47 -79	4.76 64 -24	12.63 171 -18 20.49 277 -12	28.35 383 -6	36.22 489 0 44.08 595 6	51.94 701 12 59.80 808 18	60.00 810 24	0.00260 60.00 810 29 1984 0.00288 60.00 810 35 2381 0.0028 00.00 810 35 2381	60.00 810 41 60.00 3085 47	60.00 1187 53 60.00 810 59	810 65	60.00 810 76		60.00 4746 94	4/45 100 4509 106	60.00 4509 112 7166 ²		Pnx = 23561 kips Mnx = 98829 kip-ft		
Project: 5F0BB Peer Review Subject: Pier E2 Capbeam Content: LB: Bearing: Pumin	T3.2 T3.3	T2.1 72.1 5.0	12.2 12.3 1.1	21 11.1 207.28 23 T1.3 207.28 24 T1.4 207.28	Dainforrament forrac	:	No. Name yett in	0 -	83	B4 B5	31.49 37.37	B8 43.25	49.13 55.00	B11 60.88 M1 66.76	13 M2 72.64	M3 78.51 M4 84.39	16 M5 90.27	M6 96.15 M7 102.02	M8	M9 M10	M11 M12	M13	25 M14 143.17 26 M15 149.04	M16 T1		M18	M20	M21 M22		14 T5	Т6		Resultant forces:		

NYG 8:8:2013 8:8:2013 5 of 6																												1082 MN	11 MN-m	1 00	00.1			62 MN 1095 MN			NA	0.72
Made by:		0.40 422.49	166.66	= 23/883 kips = 0 kip-ft		🚙o= 0.00592	di Msi	in kip-ft 5/1 3235	26 1451		-62 -2439 53 3148				53 3280 25 1/1/2			54 3235 26 1451			11 587			53 5148 777 AC		Ĵ	8063	243098	8063	= 0.40 in			29818		Load Contour Method	NA Kip	AN	= 0.66 = 0.06 = 0.72 OKI
		ex = c =	то (= 0 = 0		2 2		ksi 01 86		72.41	3 60.60 473 1 91.52 715	83.87	72.75	60.94	2 91.69 736 5 84.04 675	72.58	60.77	5 84.21 676	76.23	60.25 07.05		72.58	64.94	CI/ 2C.IE I	76.57	60.59	14785	Pny =	Mny =	EX =	sai ya hai ya		0.10, f cAg =	Fu = Po =	Loa	Pr =	Pu/Pr =	Mux/Mrx = Muy/Mry = IE =
5FOBB Peer Review Pier E2 Capbeam LB: Bearing: Pu min	Mny					estressing strain:	×	in 137 42 0 00323	109.08 0.00296	65.30		107.82	66.56	22.78	136.79 0.00322 108.45 0.00325	65.93	22.15	137.42 0.00323 109.08 0.00296	79.47		94.27 0.00282			1.00215 U.UU321 107.82 0.00295								5	onsidered as a column:		(ure:			
Project: 57088 Subject: Prer 22 Subject: 18: Content: 18:	- Minor-axis bending resistance: Pny, Mny	Eccentricity: Neutral axis depth:		CONCLETE FORCES:	Tendon forces:	Effective initial prestressing strain:	No. Name	1 861	2 86.2		4 B6.4 5 R5.1					11 B4.3			15 T3.3		18 12.2			211 171 CC				Resultant forces:				- Biaxial flexure check: A.5.7.4.5	Minimum axial load to be considered as a column:	ractored axial load: Nominal axial resistance:	Method to check biaxial flexure:	Reciprocal Load Method:		Load Contour Method:
Q																																						
5 8/8/2013 8/8/2013 6 of				25 mm 150 mm		149 MN-m	34 MN-m 0 MN-m		88 MN-m	0.00			MM 11								31 MN						07 MAN	~			0 MN							0.00
Made by: NYG 882013 Checked by: 882013 582013 Sheet No.: 6 01		0:00	Acp = 41414 in2 nc = 823 in	0.98 in 25 5.91 in 150	37537 in2	/84 in 109830 kip-ft 149			64708 kip-ft 88 0.00 OKI 0.00					11 sdiN c042			dV = 189 IN	🛤 average = 0.00141		0 = 55.9 0 = 7.335	6907 Kips 31		00 doc		5.91	n = 8		0.73 OKI 0.73			0 Kips 0	Kips 0	<mark>2</mark>	ni oz zvo dv = 126 in	📣 average = 0.00000	n= 4.800		

8/8/2013	8/8/2013 1 of 6	5		<u>u</u>	24 KIVIM3 55 MD5				0	1858 MD3			195 KN			10 mm	0.15 /rad 0.00066 /m		12 mm	995 mm		PT + EQ + DL	150 MAN				2 MN-m m-m						6000 mm		110 mm						Î	-1374 -654	458 492 1570 492
NYG		2	4																														≘.≘	1			in Z	in 4		in 3	~	0.25 0.25	0.25 0.25
		Shers 201	phero. 20		1 1 1	z is	.⊆	in2	ksi 	kips kei	kips	fpu	kips four	nd j	tpu	. <u>ല</u>	/rad /ft		2.5	.⊑		uy max L	bine a	kips kips	kips	kip-ft	kip-ft kip-ft				i	ţ ¥	101		.⊆	Eff at _{so} u	37924 114	83 163652090	87775676	1438326 1053377	Area (in2)	7.81 8.03	8.03 7.81
Made by:	Checked by: Sheet No -	ED Decirun	ווה הפועוו	L T	<u>0</u> a	o 09	0.60	0.217	28478	20.45 0,40	52.58	%06	43.82	67%	63% 0.00592	0.39	0.15	5	0.47	39.17		PT + EQ + DL	16335	19951	1072	224034	1819 14051		-	Bearing		16.59	236.2	4.33	4.33	Gross	41414 118.110	88 192573235	106074258	1630453 1210084	Strands	36 37	37 36
i	ð °	AASHTO I RED Design Specs 2012			= 1 	 - -	Diameter =	= A =	Ep =	= nd_	Fpy =	fpy =	Fp max =	ip Jacking = fpt =	tpe = -	= ~ ~	=×	C	20 2 = 2	e1 =		Maximum Bearing: Vuy max PT + EQ + DL	- 10		Vux =	Mux =	Muy = Tu =			Location = Bearing		۳ × د	н н о т	Top = Bottom =	Lateral =		A = Yc =	= = ×	ly =	Sx = Sy =	y**(in)	22.60 22.60	22.60 22.60
			-										4		losses:	Cases.										(uc															x* (in)	-54.09 -25.75	18.03 61.81
	VER	VDII												Max	Max	MIGA			g							er in tensic											÷				Name	B6.1 B6.2	B6.3 B6.4
SFOBB Peer Review	Pier E2 Capbeam LD C- Rearing: Vuin may	ncarrid. Vul											strand:	nsfer with	s considering onsidering	fillianistic			espect to duct (pier cap:			imum effect:			$>0 \rightarrow Top$ fiber in tension)	Ħ										bottom corner				No.	1	ω 4
. 1	MODISIG-MASTERS Subject: Pier E2 C			1 Material properties:	- Concrete density: - Concrete 78-day compressive strength:	 Concrete 20-day compressive surging in Reinforcement strength: 	 Prestressing steel strand: 	Strand cross-sectional area:	Modulus of Elasticity:	Ultimate tensile strength:	Minimum yield strength:		Maximum stressing force per strand:	% prestressing stress after transfer with	% Effective prestressing stress considering Effective prestressing strain considering	Vedge seating:	Friction coefficient: Wobble coefficient:	- Tendons:	Location of tendon CG with respect to duct CG	2 Bearing location: - Eccentricity between shaft and top of pier cap:	3 Loads:	- Case	 Loading effects at the section of maximum effect: ^{Avial (it <0}	Axial (II <0 7 Terision) In-nlane shear	Out-of-plane shear	In-plane-bending moment: (if >0	Out-of-plane bending moment Torsion	4 Pier cap section properties:	- Section No		- Dimensions:	Location from cap end	Denth	Concrete cover:		- Section properties:	Area Centroid (with respect to left bottom corner)	Moment of inertia		Section modulus	- Longitudinal tendon locations:	*from section centerline **from bottom of gross section	

8/8/2013	2 of 6	-1342 634 -622 634				442 822 1EEA 000		-654 5175							1571 5317		m) y (r	57 313		57 611 57 51			57 1209		57 1656		43 2104			43 2701		45 5000 43 3149				43 3896		57 4344		43 4642 43 4791		43 5090 43 5230			57 5687 57 5837
NYG		0.43 0.43	0.43	0.43	0.48	0.48	0.21	0.21	0.21	0.17	0.12	0.12	0.00	0.00	0.00	0.25																													
		7.81 8.03	8.03	7.81 8.03	8.03	8.03	c0.0 7.81	8.03	8.03	/.81 8 03	8.03	8.03	8.03 7.81	8.03	a.us 7.81	190.96	Area (in2)	63.28 55 37	55.37	23.73	23.73	23.73	55.37	75.37	55.37	13.51	13.51	13.51	13.51	13.51	13.51	13.51	13.51	13.51	13.51	13.51	13.51	19.78	13.51	13.51	13.51	13.51	79.10	79.10	75.15 75.15 1167 27
Made by: Checked by:	Sheet No.:	36 37	37	36	37	37	36	37	37	۹ ۴	37	37	36 36	16	36 36	.5 .5	Qty	<u>0</u> 1	14	u u	ە ە	9	14	<u>4</u>	14	o u	ە ە	9	ى ق	9 0	0 (ى م	9	ע ט	9 0	9 0	9 Ç	2 vo	9 1	ی م	و د	עט	<u>ہ</u> و	50	19
U		28.19 28.19	28.19	28.19 35 59	35.59	35.59 25.50	20.002	206.02	206.02	206.02 211.61	211.61	211.61	211.61 211.61	211.61	211.61	119.29 1.18	y**(in)	0.44 12.31	18.19	24.07	35.82	41.70	47.58	59 33	65.21	71.09	/6.9/ 82.85	88.72	94.60 100.48	106.36	112.23	123.99	129.87	135.74	147.50	153.38	159.25 165 13	171.01	176.89	182./b 188.64	194.52	200.40	212.15	218.03	223.91 229.78
		-52.83	16.77	60.55 -53.46	-25.12	17.40	-54.09	-25.75	3.86	63.11 -39.29	-10.94	17.40	-52.83 -52.83	-24.49	2.60 61.85	-0.58	db (in)	7 74	2.24	2.24	2.24	2.24	2.24	47.7 7 74	2.24	1.69	1.69 1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69 1.69	2.24	1.69	1.69	1.69	1.69	60.1 7.24	2.24	2.24
	y max	B5.1 B5.2	B5.3	B5.4 R4 1	B4.2	B4.3	13.1 T3.1	T3.2	13.3 1	13.4 T2.1	T2.2	T2.3	12.4 T1.1	T1.2	T1.4	Centroids = Eccentricity =	Name	- G	B3	84 5	B6 B6	B7	88	810 B10	B11	ž	M3 M3	M4	M6 M6	M7	8M 8	M10	M11	M12 6 10	M15	M15	M16	1	M17	M18 M19	M20	M21 75M	73 ET	T4	T5 T6
er Review nheam	Bearing: Vuy max	y در	7	ω σ	0	= ;	4 (1	4	15	16 17	18	19	21 20	121	24 24	Ë	No.	- ~	ı m	4 -	e 0	7	ω c	<i>v</i> (; [12	14	15	16	18	19	21	22	23	25	26	27	59 59	80	ج ج	3 8	34 35	98	37	8 6 8
SFOBB Peer Review Pier F2 Canheam	TP C: F																locations:	action																											
Project: Subiect:	Content:																forcement	**from hottom of aross section																											
	MODJESHO-MASTERS																- Longitudinal reinforcement locations:	**from hot			13	9																							

12013 12013 - E	d 10 E			143 MN		15 MN 300 MN-m		5.9 MPa	11.4 MPa 0.1 MPa		-5.6 MPa	10.00								4233 mm	MM 08/6															
	Sheet No.:		0:00 = U	Pu = 32218 kips		Pu = 3406 kips Mux = 220863 kip-ft Mux = 2208 kip-ft		Pu/A = 0.860 ksi		2.527 32%			strain compatibility	Unconfined	Rectangular - 0 85	R = 0.65				b = 167 in	877		1.2	c= /9.41 m a= 51.61 in	Pc = 58492 kips	c00074	e. 0.00592	: ;	l sı kips	633 -96 650 -96	650 -96		715 -90 715 -90	696 -90 800 -83	800 -83	55 800 -83 -5502 38 2042 88 14959
SFOBB , Pier E2	Content: LP C. Bearing: VU) max	5 Check for axial and flexural force effects:	- Resistance factor: A.5.10.11.4.1b	- <i>Loading effects:</i> 1 Prestressing loading effects:		2 Net loading effects:	C Total Involution	o rotal loduing suresses.					- Analysis approach:	- Concrete behavior assumptions:	Stress distribution: A.5.7.2.2		Compressive strength: Ithimate commercian etrain:	Ortifitate compression strain. * Seismic Design of Reinforced Concrete and Masonry Building	Ignore concrete cover for cakulations at this strain level Modulus of Elastricity — A 5 4 2 4-1	Effective section properties:		- Major-axis bending resistance: Pnx, Mnx	Eccentricity:	Neutral axis deptri:	Concrete forces:		Tendon forces: Effective initial prestressing strain:		in yett	1 B6.1 18.27 0.00284 81.01 2 R6.2 18.27 0.00284 81.01	B6.3 18.27 0.00284	B6.4 18.2/ B5.1 23.86	B5.2 23.86 0.00313 B5.3 23.86 0.00313	B5.4 23.86 0.00313 B4.1 31.26 0.00350	B4.2 31.26 0.00350	12 84.4 31.26 0.00350 9565 13 T3.1 201.69 0.01208 261.38
	4 0T b																																	65 MN 1291 MN-m	1 00	
Made by: Checked by:	bearing: vuy max	201.69 0.01208 261.38 2099 88 201.69 0.01208 261.38 2099 88 200.00 0.01208 261.30 2009 88	201.00 0.01237 261.79 2.0120 2.07 207.28 0.01237 261.79 2.102 94 7.07.78 0.01323 7.5117 2.102 94	207.28 0.01237 261.79 2102 207.28 0.01237 261.79 2102 207.28 0.01237 261.79 2102	207.28 0.01237 261.79 2045 94 207.28 0.01237 261.79 2102 94	207.28 0.01237 261.79 2102 207.28 0.01237 261.79 2045 33571		yeff 🔐 fsi Tsi di	in kips in 2.11 -0.00389 -60.00 -3797 -112	7.98 -0.00360 -60.00 -3322 -106 13.86 -0.00330 -60.00 -3322 -100		25.62 -0.002/1 -60.00 -1424 -88 31.49 -0.00241 -60.00 -1424 -82	37.37 -0.00212 -60.00 -1424 -76 43.25 -0.00182 -52.82 -2925 -71	49.13 -0.00153 -44.23 -2449 -65 55.00 -0.00122 -25.65 -1974 -50	60.88 -0.00093 -27.06 -1498 -53 60.87 -0.00093 -27.06 -1498 -53 67 - 0.00064 -64	06./6 -0.00064 -18.4/ -250 -4/ 72.64 -0.00034 -9.89 -134 -41	78.51 -0.00004 -1.30 -18 -35	84.39 0.00055 15.87 214 -29 90.27 0.00055 15.87 214 -24	96.15 0.00084 24.46 330 -18 102.02 0.00114 33.04 446 -12	107.90 0.00144 41.63 562 -6	113.78 0.00173 50.22 678 0 119.66 0.00203 58.80 794 6	125.53 0.00232 60.00 810 12 131.41 0.00262 60.00 810 18	137.29 0.00292 60.00 810 24	143.17 0.00321 60.00 810 149.04 0.00351 60.00 810 154.00 0.00351 60.00 810	160.80 0.00410 60.00 3085 47	172.55 0.00469 60.00 810 59	178.43 0.00499 60.00 810 65 184.31 0.00528 60.00 810 71	190.19 0.00558 60.00 810		207.82 0.00647 60.00 4746 94 213.70 0.00676 60.00 4746 100	219.58 0.00706 60.00 4509 106	10246		14675 951693	ey = 778.19 in evred/evres = 100	
Project: <i>SFOB</i> Subject: <u>Pier F</u>	5	14 T3.2 15 T3.3			21 T1.1 22 T1.2		Reinforcement forces:	No. Name	1 81	3 2 83	4	0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		9 B9 10 B10		13 13		c1 16						26 M15 26 M15 70 M16							38 T5 20 T6			Resultant forces:		

NYG 8:8:2013 8:8:2013 5 of 6																												1065 MN			1.00		133 MN	15 MN 1095 MN			NA	0.27
Made by: N Checked by: Sheet No.:		0.94	166.11	25/042 Kips 5825 kip-ft		0.00592	di Msi	_		26 1/82 -18 -1012		53 3973		-17 -948 -61 -2560		25 1733				-63 -2622	39 2878 11 709			53 3973		-62 -2592	13000	239435 kins	18826	0.94			29818	3406 кір s 246120 kips	Load Contour Method	NA Kip		0.26 0.02 0.27 OKI
		ex = ex	וו מיסיי מיסיי	Mc =		= off	fsi Tsi			103.42 830 83.91 674				84.47 6/8 64.96 507							109.46 879 96.82 777				07.20 825 00.70 720		17607	Pnv =	Mny =	ex =	ex req/ ex res =		0.10, f cAg =	Pu = Po =	Load	Pr =		Mux/Mrx = Muy/Mry = IE =
eer Review apbeam Bearing: Vuy max						sing strain:		2	0.00408	109.08 0.00363 10 65 30 0.00295 83	0.00226	0.00406	0.00361	0.00297 0.00228	0.00407	0.00362	0.00227	0.00408	0.00317	0.00224	122.62 0.00384 10 94 27 0.00340 96	0.00296	0.00251		0.00361	0.00226							red as a column:					
SFOBB PA Pier E2 C LP C:	tance: Pny, Mny	÷				Effective initial prestressing strain:	Name			B6.2 B6.3				B5.3 B5.4	B4.1	B4.2	B4.3 B4.4	T3.1	13.2 T3.3	T3.4	12.1 7 2 2	T2.3	T2.4	T1.1	11.2 2.11	T1.4						A 5 7 4 5	Minimum axial load to be considered as a column:	ad: sistance:	: biaxial flexure:	Method:		ethod:
MODISIG-MAXING Subject: Subject:	- Minor-axis bending resistance: Pny, Mny	Eccentricity: Neutral axis depth:		Concrete Torces:	Tendon forces:	Effecti	No.		- (7 m	- 7	ц	1 0	/ 8	- 6	10	12	13	15	16	17	19	20	21	77 66	24		Resultant forces				- Biaxial flexure check:	Minimum axial lo	Factored axial load: Nominal axial resistance:	Method to check biaxial flexure:	Reciprocal Load Method		Load Contour Method:
8/8/2013 8/8/2013 6 of 6				25 mm 150 mm		149 MN-m		19 MN-m	94 MN-m				89 MN	11 MN							38 MN		83 MN					01 MIN 280	ļ			NMN 0						0.08
Made by: <u>NYG</u> Checked by: <u>Sheet No:</u>		0.00	Acp = 41414 in2 nc = 823 in	0.98	37537	ph = 784 in Tcr = 109830 kip-ft	24712	Tu = 14051 kip-ft DT need to be considered for sheer ch	TO BIOLIAI ELLECTS DO INOT LIEGULO DE COLISIOELEU IOL SITEAL CITECKNING	Tu _n Tn = 0.20 OKI			Vuy = 19951 Kips		0d = 0 58432	175	189	st average = 0.00088		0= 32.1	= 2.002 Vc = 8555 Kips		18626	06.0	d = 0.36 III 5 = 5.91 in	0		$V_{\rm LV} = 24463 \text{ KIPS}$			0201	vux = 10/2 $kipsVp = 0$ $kips$	2	bv = 236 in dv = 126 in	*; average = 0.00000	R= 4.800		$Vu_{c1}Vc = 11513$ Kips $Vu_{c1}Vc = 0.08$ OKI
er Review apbeam Bearing: Vuy max		A.5.5.4.2	at ettects. Total area enclosed by outside perimeter of concrete: And utside neuroneter of the concrete section:			Perimeter of centerline of exterior stirrups: Torsional cracking moment:	0.25 ₀ Tcr=	Torsional affects DO NC		C T L			>	Prestressing force in direction of Vu:	n-nlane concrete shear resistance annroach. Method =			aver 😸		-Crack angle: Destamotor Assertation min transverse rainforcomont:			In-plane steel shear resistance:									recorections Prestressing force in direction of Vu:	Method = Method = Method = Method = Method =			Parameter ${f R}$ assuming min. transverse reinforcement:	In-plane concrete shear resistance:	7

	Project: <i>SFO</i> . Subject: <u>Pier</u>	SFOBB Peer Review Pier E2 Capbeam			5	Made by: Checked by:		NYG	8/8/2013 8/8/2013	
MODUESIG	·	: Shear Key: Mux	x max		U1	Sheet No.:			1 of	9
0 Specifications:					AASHTO LRFD Design Specs. 2012	FD Design	Specs. 201	2		
 1 Material properties: - Concrete density: - Concrete 28-day compressive strength: 	s: mpressive strer	ngth:			Wc = f c =	0.15 8 60	is is		Metric 24 55	KN/m3 MPa
Prestressing steel strand:	rrand:				ا y = Diameter =	0.60	2.≘		15	mm
Strand cross-sectional Modulus of Elasticity:	Strand cross-sectional area: Modulus of Elasticity:	a:			= A = = D =	0.217 28478	in2 ksi		140 196500	mm2 MPa
Ultimate te	Ultimate tensile strength:				Fpu =	58.43 269	kips kei		260 1858	KN
Minimum y	Minimum yield strength:				Fpy =	52.58 an%	kips frou		234	XN N
Maximum :	Maximum stressing force per strand:	per strand:		4	Fp max = Fn max =	43.82 75%	kips fnu		195	KN
% prestres: % Effective Effective pr	sing stress afte e prestressing s restressing stra	% prestressing stress after transfer with % Effective prestressing stress considering Effective prestressing strain considering	<mark>Max</mark> Max Max	losses: losses: losses:	p Jacking = fpt = fpe =	67% 63% 0.00592	hd fpu			
Wedge seating: Friction coefficient: Wobble coefficient:	kting: efficient: efficient:				:""""""""""""""""""""""""""""""""""""	0.39 0.15 0.000201	in /rad /ft		10 mn 0.15 /ra 0.00066 /m	mm /rad /m
- Tendons: Duct diameter: Location of ten	eter: f tendon CG wi	:: Duct diameter: Location of tendon CG with respect to duct CG	5		0D = Z =	5.51 0.47	.드 .드		140 12	u u u
2 Bearing location:- Eccentricity between shaft and top of pier cap:	en shaft and to	p of pier cap:			e1 =	39.17	. <u>=</u>		995	шш
3 Loads: - Case					Maximum <mark>Shear Key: Mux max</mark> PT + EQ + DL	ר <mark>Shear Key: I</mark> PT + EQ + DL	: Mux max		PT + EQ + DL	۲.
 Loading effects at the section of maximum effect: Axial (it <0 → Tension) Ih-plane shear Out-of-plane shear Ih-plane-bending moment. (if >0 → Top fil Out-of-plane bending moment Torsion 	effects at the section of maxim Axial (it <0 → Tension) In-plane shear Out-of-plane shear In-plane-bending moment: (if > Out-of-plane bending moment Torsion	effects at the section of maximum effect: Axial (it <0 → Tension) In-plane shear Out-of-plane shear Dut-of-plane bending moment (if >0 → Top fiber in tension) Out-of-plane bending moment Torsion	in tensio	(u	Pu = Vuy = Vux = Nux = Muy = Tu =	41614 20054 1840 906959 23576 24111	kips kips kip-ft kip-ft		185 89 82 32 33	а им мм мм мм
4 Pier cap section properties:	operties:									
Section No.					Location =	- X				
- <i>Dimensions:</i> Location from c Vidth Depth Concrete cover:	<i>ons:</i> Location from cap end Width Sopth Concrete cover:				x = B = H = Top = Bottom = Lateral =	30.51 216.5 236.2 4.33 4.33 4.33	ft 208 1. in in 228	. <u>5</u>	9298 5500 6000 110 110	
- <i>Section properties:</i> Area Centroid (w	vith respect to	oroperties: Area Centroid (with respect to left bottom corner)			A = yc =	Gross 51150 118.110	Eff at _{ac} u 47304 114			
Moment of inertia	f inertia				= = = × × ×	108 237848451 199858768	104 204127410 170338765	in4 in4		
Section modulus	dulus				- <u>-</u> S S S S S	2013784 2013784 1845968	1794061	r 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.		
 Longitudinal tendon locations: *from section centerline *from bottom of gross sect 	<i>dinal tendon locations:</i> *from section centerline **from bottom of gross section	0 – 7 m 4	Name B6.1 B6.2 B6.3 B6.4	x* (in) -54.09 -25.75 18.03 61.81	y**(in) 22.60 22.60 22.60	Strands 36 37 37 36	Area (in2) 7.81 8.03 8.03 7.81	r _x (rad) 0.25 0.25 0.25 0.25	x (mm) y (mm) -1374 492 -654 492 458 492 1570 492	y (mm) 492 492 492 492

8/8/2013 8/8/2013	2 of 6	-1342 634 -622 634				442 822							442 5317			1571 5317		db (mm) y (mm) 57		57 462		57 910							43 2254	43 2552 43 2552		43 2851 43 2000			43 3448 43 3597					43 4493			43 5090			57 5687 57 5837
NYG &		0.43				0.48			12.0				0.12			0.00	0.25	ę																												
		7.81 8.03	0.03 8.03	7.81	8.03 0.03	8.03	8.03	7.81	8.03 8.03	7.81	8.03	8.03	8.03	20.0 7.81	8.03	7.81	190.96	Area (in2)	79.10	79.10	47.46 47.46	47.46	47.46	55.37 55.37	55.37	55.37	13.51	13.51	13.51	13.51	13.51	13.51	13.51	13.51	13.51 13.51	13.51	13.51	13.51 51 42	19.78	13.51	13.51	13.51	13.51	12.21 142.39	110.75	106.79 106.79
Made by: Checked by:	Sheet No.:	36 37	31	36	ب م	37	37	36	ی ۲۳	÷ ۳	37	37	37	36 36	37	98 9	.e .e	Qty	20	20	5 5	12	2:	4 1	<u>4</u>	14	ى م	o 0	9 1	و ہ	9	עט	ى م	9 0	ی م	9 0	9 (¢ ۵	2 vo	9 0	ی م	9 0	9 0	9 ye	28	27
0		28.19 28.19	28.19	28.19	35.59 25 50	35.59	35.59	206.02	206.02	20.002	211.61	211.61	211.61	211.61	211.61	211.61	119.29 1.18	y**(in) 6 44	12.31	18.19	24.07	35.82	41.70	47.58 53.46	59.33	65.21	71.09 76 97	82.85	88.72	94.60 100.48	106.36	112.23	123.99	129.87	141.62	147.50	153.38	159.25	171.01	176.89	188.64	194.52	200.40	206.27	218.03	223.91 229.78
		-52.83	16.77	60.55	-53.46	17.40	61.18	-54.09	د/.د/- 3 86	53 11	-39.29	-10.94	17.40	45.75 -52.83	-24.49	61.85	-0.58	(in) db مرد د	2.24	2.24	2.24	2.24	2.24	2.24	2.24	2.24	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69 7.24	2.24	1.69	1 69	1.69	1.69	20.1 2.24	2.24	2.24
	<i>Nux max</i>	B5.1 R5.2	B5.3	B5.4	64.1 04.2	B4.3	B4.4	T3.1	13.2 7.3.2	T3.4	T2.1	T2.2	T2.3	T1.1	T1.2	T1.4	Centroids = Eccentricity =	Name B1	B2	B3	84 85	B6	B7	88 8	B10	B11	Εž	M3	M4	GIM M6	M7	8M Mg	M10	M11	M13 M13	M14	M15	M16	12	M17	M19	M20	M21	M22 T3	14	75 76
er Review obeam	Shear Key: Mux max	ыv	2	8	υĘ	2 =	12	£	4 U	<u>,</u> 4	17	18	19	21	22 22	24	Ë	No.	- 2	· m ·	4 v	9	r i	∞σ	, 5	1	1 1	5 4	5	17	18	19	21	22	74 24	25	26	78	29	8	5 6	3 8	34	ç, %	37	8
B P€	TP C:																	locations:	section																											
Project: Subject:	Content:																	nforcement	**from bottom of aross section	'n																										
SHITSAM - DISTLICTOR	NINALIAR NAVATI																	- Longitudinal reinforcement locations:	**from bot			14	2																							

	3 of 6			143 MN		42 MN 1226 MN-m	MI-NIMI OF	5.6 MPa	37.3 MPa 11 MPa	44.0 MPa	-32.7 MPa	59%									5280 mm 5780 mm																
	Sheet No.:		n= 0.90	Pu = 32218 kips			11-dix 62022 = YuM	0.814		6.371	_	59% f'c	Strain compatibility	Unconfined	Rectangular		0.65 8	*:u= 0.004 *	igs, Paulay and Priestly, pag. 98	5422	b = 208 in h = 228 in			ey = 1154.32 in c = 67 56 in	43.92	Pc = 62078 kips Mc = 475008 kip-ft		eso= 0.00592	i i i	lsı kips in	669 687	687 -96	669 -96 742 -90	763 -90 763 -90	742 -90 863 -83	863 -83 83	863 2058
SFOBB Pa Pier E2 C	www.mwww.content: LPC: Shear Key: Mux max	5 Check for axial and flexural force effects:	Resistance factor: A.5.10.11.4.1b	- Loading effects: 1 Prestressing loading effects:		2 Net loading effects:	2 Tetal Londina reference.	o rotal loading suresses.					- Analysis approach:	- Concrete behavior assumptions:	Stress distribution: A.5.7.2.2		Compressive strength:	Ultimate compression strain:	* Seismic Design of Reinforced Concrete and Masonry Buildings, Paulay and Priestly, pag. 98 Ignore concrete cover for calculations at this strain level	Modulus of Elasticity: A.5.4.2.4-1	Effective section properties:	- Maior-axis bonding resistance: Pox Mox		Eccentricity: Neutral axis denth:		Concrete forces:	Tandan farras	Effective initial prestressing strain:	Marrie	yett 🚒	B6.1 B6.2	B6.3 18.27 0.00301	B6.4 18.27 0.00301 B5.1 23.86 0.00334	B5.2 23.86 0.00334 B5.3 23.86 0.00334	23.86 0.00334 31.26 0.00378	B4.2 31.26 0.00378 B4.3 31.26 0.00378	12 1844 51.26 0.00378 107.51 13 13.1 201.69 0.01387 263.42
	4 of 6																																		52 MN 1528 MN-m	1.00	
	Sheet No.:	8 8 8	2117 94 2117 94	2117 2117 2117	2060 94 2117 94			di	kips -4746		-4/46 -100 -2848 -94	-2848 -88 -2848 -82	-2460 -76	-2312 -71 -1753 -65	-1194 -59 -635 -53	-19 -47	118 -41 254 -35	-29	526 -24 663 -18	799 -12		810 6 810 12	810 18	810 24 810 29	60.00 810 35 2381 60.00 810 41 2778	3085 47 1187 53		810 71	810 76 810 82	810 88	60.00 8543 94 66951 60.00 6645 100 55328	6407 106	040/ 16025		Pnx = 11709 kips Mnx = 1126371 kip-ft 200 = 1154 323 in	1.00	
SFOBB Pe Pier E2 C	LP C: Shear Key: Mux max	T3.2 201.69 0.01387 T3.3 201.69 0.01387 T3.4 201.69 0.01387	T2.1 207.28 0.01420 T2.1 207.28 0.01420 T2.1 207.08	T2.3 207.28 0.01420 T2.3 207.28 0.01420 T2.4 207.28 0.01420	T1.1 207.28 0.01420 T1.2 207.28 0.01420	T1.3 207.28 0.01420 T1.4 207.28 0.01420	orces:	Name yeff 📰	in 11 -0.00388	7.98 -0.00353	13.86 -0.00318 19.74 -0.00283	25.62 -0.00248 31.49 -0.00214	B7 37,37 -0.00179	B8 43.25 -0.00144 B9 49.13 -0.00109	B10 55.00 -0.00074 B11 60.88 -0.00040	M1 66.76 -0.00005	M2 72.64 0.00030 M3 78.51 0.00065	M4 84.39 0.00100	M5 90.27 0.00134 M6 96.15 0.00169	M7 102.02 0.00204	M8 107.90 0.00239 M9 113.78 0.00274	M10 119.66 0.00308 M11 125.53 0.00343	M12 131.41 0.00378	M13 137.29 0.00413 M14 143.17 0.00448	M15 149.04 0.00482 M16 154.92 0.00517	T1 160.80 0.00552 T2 166.68 0.00587	M17 172.55 0.00622	M19 184.31 0.00691	M20 190.19 0.00726 M21 196.07 0.00761	M22 201.94 0.00796	T3 207.82 0.00830 T4 213.70 0.00865	T5 219.58 0.00900	CC600.0 C4:CZZ 01				
Project: Subject:	G	15	17	20	21	52 74	Reinforcement forces:	No.	-	- 7 (υ4	ы С		ω σ	10		14		16	18	15	21	3 8	24	26	28 29	30	32	33	35	36	88.0	20		Resultant forces:		

NYG 882013 882013 5 of 6																											997 MN 712 MN-m		1.00		164 MN			ΦN N	0.0
Made by: N Checked by: Sheet No.:		28.13 242.39	157.55	= 243794 kips = 511190 kip-ft		= 0.00592	di Msi	in kip-ft 54 4545	26 1994					53 4607 35 4607		-61 -3066 EA AEAE					-17 -1112			-3 -178 -178	-02- 13769		= 223949 kips = 524959 kip-ft	28.13	- 1.00		= 36828 kips	309901	Load Contour Method	= NA Kips NA NA	0.05 0.05
		ex = c	ш Ф	Pc = Mc =		=01		ksi kips 129.07 1008		95.18 764 74.60 583		115.16 925				74.90 601					95.47 767 82.15 660			102.43 822 74 E0 E02	19845 19845	I	Pny = Mny =	ex =	ex req/ ex res =		0.10, f cAg =	- = od	Loac	Pr = Pu/Pr =	Mux/Mrx = Muy/Mry = IE =
er Review apbeam Shear Key: Mux max						train:	12	0 00453	0.00406	0.00334 0.00262	0.00451	0.00404	0.00264	0.00452	0.00335	0.00263	0.00406	0.00358	0.00429	0.00382	0.00335	0.00451	0.00404	0.00360	70700.0						s a column:				
<i>SFOBB Peer Review</i> <i>Pier E2 Capbeam</i> <i>LP C: Shear Key</i>	e: Pny, Mny					Effective initial prestressing strain:	Name xeff	in B6 1 158 03				B5.2 128.43						T3.3 100.08			T2.3 86.54 T2.4 58.10			T1.3 101.34						A 5 7 4 5	o be considered a:	lce:	kial flexure:	:pot	÷
Project: Motorstantes Subject:	- Minor-axis bending resistance: Pny, Mny	Eccentricity: Neutral axis depth:		Concrete forces:	Tendon forces:	Effective in	No.	-	2	₩ 4	. Ω	n ov	~ 8	6	2 ==	12	5.4	15	17	18	19	20	22	23	47		Resultant forces:			- Biaxial flexure check:	Minimum axial load to be considered as a column:	Nominal axial resistance:	Method to check biaxial flexure:	Reciprocal Load Method:	Load Contour Method
882013 882013 6 of 6				25 mm 320 mm			43 MN-m 33 MN-m		46 MN-m 0.71			89 MN								29 MN	121 MN		43 mm	254 mm		135 MN	0.66		8 MN						70 MN 63 MN 0.12
Made by: WYG Checked by: Sheet No.:			Acp = 51150 in2		46876	86/ 141976	0.25 ₀ /Tcr= 31945 kip-ft Tu= 24111 kip-ft	DO NOT need to be considered for shear ch	Tui-Tri = 0.71 OKI 0.71			Vuy = 20054 Kips	2405	Method = 2 A.5.8.4.3.2	bv = 217 in		🛃 average = 0.00224	θ= 36.8		Vc = 6543 Kips	Vs = 27711 Kips	90 deg	1.69 in	.5	0	30379 Ki	Vurturn = 0.66 OKI		Vux = 1840 Kips	Vp = 0 Kips	Method = 2 A.5.8.4.3.2		🗱 average = 0.00000	R= 4.800	Vc = 15800 Kips $t_{\rm H}Vc = 14220$ Kips $Vu_{\rm G}Vc = 0.12$ OK
Project: 5F088 Peer Review subject: Pier E2 Capbeam content: LP C: Shear Key: Mux max	6 Check for shear and torsional force effects:	- Resistance factor: A.5.5.4.2	- 1015/0nal effects: Total area enclosed by outside perimeter of concrete: Outside continued of the concrete continue.	ousside perimeter or the concrete section. Diameter of exterior stirrups. Spacing of exterior stirrups:	Area enclosed by the shear path:	Perimeter of centerline of exterior stirrups: Torsional cracking moment:			Torsional resistance:		- In-plane shear:	Factored load:	Prestressing force in direction of Vu:	In-plane concrete shear resistance approach:	Effective width		Net tensile Strains:		Parameter gassuming min. transverse reinforcement:	hn-plane concrete shear resistance:	h-plane steel shear resistance:	Inclination of reinforcement:	Diameter of stirrups:	Spacing of stirrups: No of reinforcement long:				- Out-of-plane shear:	Factored load:	Prestressing force in direction of Vu:	In-plane concrete shear resistance approach:	Minimum Shear depth:	Net tensile Strains:	Parameter 🖪 assuming min. transverse reinforcement:	In-plane concrete shear resistance:

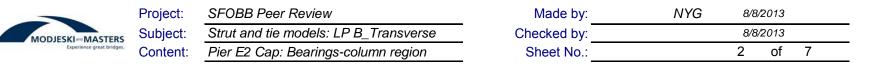
DAN	1 of	ecs. 2012	Metric 74 KN/m3	22	414	140 mm2	196500	kips 260 KN 1858 MP3	234	fpu kips 195 KN		fpu	in 10 mm /rad 0.15 /rad	0.00066	140 mm 12 mm	9 <mark>95</mark> mm		PT + EQ + DL	159 92 688	kip-ft 18 MN-m kip-ft 19 MN-m				208 in	228 in 6000 110		<u>.</u>			1794061 in3 1638865 in3
Made by: Checked by: Sheet No.:	Sheet No.:	AASHTO LRFD Design Specs. 2012	0 15	0	= 60 ksi	0.217	28478	58.43	209 52.58	90% 43.82	75%	63% 0.00502	0.39	k = 0.000201 /ft	= 5.51 in = 0.47 in	= 39.17 in	Maximum Shear Key: Vuy max	PT + EQ + DL	35624 20662 1072 506353	13092 14049		- 5	Ŷ	x = 30.51 ft B = 216.5		4.33	Gross 51150 118.110	108 237848451	199858768 2013784	= 1845968
		AASHTO	5777	fic=	fy =		Ep =	Fpu =	Fpy =	fpy = Fp max =	fp jack	losses: fpe = for	~~	~	DD Z	e1	Maximu			Muy = Tu =		- action -	FOCEIOI	×B	H = Top = Bottom =	Latera	A = yc =	xc = x =	SX =	<u> </u>
iew 1 Kev: Vuv max	ey: Vuy										No.	Max			o duct CG	ö		Georee	<i>Tect:</i> op fiber in tensior								corner)			
SFOBB Pe Pier E2 G LP C:	Content: LP C:	0 Specifications:	1 Material properties: - Concrete density:	- Concrete 28-day compressive strength:	- Reinforcement strength:	 Freshesting steel straint. Strand cross-sectional area: 	Modulus of Elasticity:	Ultimate tensile strength:	Minimum yield strength:	Maximum stressing force per strand:		70 prestressing stress after transfer with % Effective prestressing stress considering Effective prostressing considering	Vedge seating: Vedge seating: Friction coefficient:	Wobble coefficient: - Tendons:	Duct diameter: Location of tendon CG with respect to duct CG	2 Bearing location: - Eccentricity between shaft and top of pier cap:	3 Loads: - Case	I and in affords at the continue of manipulation	- Loading effects at the section of maximum effect: - Loading (if <0 > Tension) In-plane shear Out-of-plane shear In-plane-bending moment: (if >0 \rightarrow Top fiber in tension)	Out-of-plane bending moment Torsion	4 Pier cap section properties:	- Section No.	- Dimensions:	Location from cap end Width	Depth Concrete cover:		- Section properties: Area Centroid (with respect to left bottom corner)	Moment of inertia	Section modulus	

8/8/2013 8/8/2013	2 of 6	-1342 634 -672 634				442 822 155A 822						442 5317			66 5317 1571 5317		m) y (r			57 611									4.3 2552						43 3746			57 4344			43 4941	43 5090 43 5739			57 5837
NYG		0.43 0.43	0.43	0.43	0.48	0.48	0.21	0.21	0.21	0 12	0.12	0.12	0.00	0.00	0.00	0.25																													
		7.81 8.03	8.03	8.03	8.03	8.03 8.03	7.81	8.03	8.03	8.03	8.03	8.03	8.03 7.81	8.03	8.03 7.81	190.96	Area (in2)	79.10	79.10	47.46	47.46	47.46	55.37	75.37	55.37	13.51 12.51	13.51	13.51	13.51	13.51	13.51 13.51	13.51	13.51 13.51	13.51	13.51	13.51 13.51	51.42	19.78	13.51 13.51	13.51	13.51	13.51 13.51	142.39	110.75	106.79
Made by: Checked by:	Sheet No.:	36 37	32	95 75	37	37	98	37	37	۹۶ ۲۳	37	37	36 36	31	36 36	.5 .5	Qty	02 02	5	ç ;	2 2	12	14	4 4	14	ى و	ად	ω u	و ہ	9	ى م	9	ى م	9 0	9	ی م	÷ ۳	5	ى م	9 0	9	ى ب	36	28 77	57
Ċ		28.19 28.19	28.19	28.19 35 59	35.59	35.59 25.50	206.02	206.02	206.02	206.02	211.61	211.61	211.61	211.61	211.61 211.61	119.29 1.18	y**(in)	0.44 17 31	18.19	24.07	35.82	41.70	47.58	59.33	65.21	71.09 76 97	82.85	88.72	74.00 100.48	106.36	112.23 118.11	123.99	129.87 135 7/	141.62	147.50	153.38	165.13	171.01	1/6.89 182 76	188.64	194.52	200.40 206.27	212.15	218.03	229.78
		-52.83	16.77	-53 46	-25.12	17.40 61.18	-54.09	-25.75	3.86	63.11 -39.29	-10.94	17.40	47. (4 -52.83	-24.49	2.60 61.85	-0.58	(in) db	47.7 7.74	2.24	2.24	2.24	2.24	2.24	2.24	2.24	1.69	1.69	1.69	1.69	1.69	1.69 1.69	1.69	1.69 1.69	1.69	1.69	1.69 1.69	2.24	2.24	1.69 1.69	1.69	1.69	1.69 1.69	2.24	2.24	2.24
	Vuy max	B5.1 B5.2	B5.3	B5.4 B4 1	B4.2	В4.3 В4.4	1 11 1	T3.2	та. Та.ч	13.4	T2.2	12.3 1	12.4 T1.1	11.2	T1.4	Centroids = Eccentricity =	Name P1	6	B3	B4	во В6	B7	88	B30 B10	B11	۲ ۲	M3 M3	M4	M6	M7	8M M9	M10	M11 11	M13	M14	۲N 16	μ	12	M18/	M19	M20	M21 M22	۳	14	T6
SFOBB Peer Review Pier E2 Capbeam	еy:	is ye	2 L C	ο σ	10	= 5	ν Ξ	14	5	17	18	19 67	21	121	24 24	0 5	No	- ~	ı m	4 1	n u	7	∞ 0	ۍ 5 س	=	12	<u>5</u> 4	15 7	11	18	19 20	21	22 82	24	25	97 27	5 78	29	°8 €	32	33	34	36	37	95 68
SFOBB P Pier E2 C	1.1																locations.	section																											
Project: Subject:	Content:																iforcement	**from hottom of aross section																											
(MODIESIO-MASTERS																- Longitudinal reinforcement locations:	**from hot			14	5																							

NYG 8/8/2013 8/8/2013	3 of 6			~	-4 MN-m -2 MN-m	15 MN 682 MN-m		4.8 MPa			-16.6 MPa 30%									5280 mm	IIIII 00/c																
Made by: Checked by:	Sheet No.:		n= 0.90		Mux = -3171 kip-ft Muy = -1551 kip-ft	Pu = 3406 kips Mux = 503182 kip-ft Mux = 11601 kip 44	+ -	Pu/A = 0.696 ksi		3.799 47%	Min = -2.406 ksi 30% f'c	Strain compatibility	Incontined		Rectangular ry = 0.85	0.65	f1c = 8 ksi	gs, Paulay and Priestly, pag. 98		b = 208 in	077		-	c= <mark>64.80</mark> in a= 42.12 in	Pc = 59538 kips Mc = 460028 kip-4	070001	e 0.00592	Ļ	kips in	32 679 -96 -5404 32 698 -96 -5554	-96	6/9 -96 756 -90	777 777	756 -90 881 -83	881 -83	76 881 -83 -6060 76 881 -83 -6060	2061 88
SFOBB F Pier E2 (www.mwww.content: LPC: Shear Key: Vuy max	5 Check for axial and flexural force effects:	- Resistance factor: A.5.10.11.4.1b	- Loading effects: 1 Prestressing loading effects:		2 Net loading effects:	3 Total Indexes.	a rotal loading suresses.				- Analysis approach:	. Concrete hehaving secumations		Stress distribution: A.5.7.2.2		Compressive strength: Ultimate compression strain:	* Seismic Design of Reinforced Concrete and Masonry Building	Ignore concrete cover for cakulations at this strain level Modulus of Elasticity: A.5.4.2.4-1	Effective section properties:		- Major-axis bending resistance: Pnx, Mnx	Eccentricity:	Neutral axis depth:	Concrete forces:		Tendon forces: Effective initial prestressing strain:			B6.1 18.27 0.00305 B6.2 18.27 0.00305	B6.3 18.27 0.00305	B5.1 23.86	B5.2 23.86 0.00340 B5.3 23.86 0.00340	23.86 0.00340 31.26 0.00385	B4.2 31.26 0.00385	11 B4.3 31.26 0.00385 109.76 12 B4.4 31.26 0.00385 109.76	T3.1 201.69 0.01437
NYG 8:8:2013 8:8:2013	4 of 6																																	33 MN 1497 MN-m		1.00	
Made by: N Checked by:	Sheet No.:	263.82 2118 88 263.82 2118 88	2120 94 2120 94 2120 94	264.07 2120 94 264.07 2120 94 264.07 2120 94	264.07 2063 94 264.07 2120 94 264.07 2120 94	2120 2063 34549		ij.	ksi kips in -60.00 -4746 -112		-60.00 -2848 -94 -60.00 -2848 -88	-0.00206 -59.62 -2830 -82 19404 -0.00169 -49.10 -2330 -76 14839	-38.58 -2136 -71	-20-00 -1224 -02 -17.53 -971 -59	-53 47	14.03 189 -41	-35 -29	45.59 616 -24	758 -18 810 -12	60.00 810 -6	60.00 810 6	60.00 810 12 60.00 810 18	60.00 810 24	60.00 810 29 60.00 810 35	0.00593 60.00 810 41 2/78 0.00593 60.00 3085 47 12088 0.00629 60.00 1187 52 5731	60.00 810 59	60.00 810 65 60.00 810 71	810 810	60.00 810 88	60.00 8543 94 60.00 6645 100	60.00 6407 106 C10 6407 1106	17512		Pnx = 7477 kips Mnx = 1103937 kip-ft	ey = 1771.80	ey req/ ey res = 1.00	
Project: SFOBB Peer Review Subject: Pier E2 Capbeam	Content: <u>LP C: Sh</u> e	T3.2 T3.3	T2.1 72.1 5.07	19 12.3 207.28 19 T2.3 207.28 20 T2.4 207.28	T1.1 T1.2	T1.4	Reinforcement forces:	No. Name yeff		2 B2 7.98 3 B3 13.86	B4 B5	6 BG 31.49 7 R7 3737	88	B30 B10	B11 M1	13 M2	M4 M4	16 M5	M6 M7	M8	M10	M11 M12	M13	M15	2/ MII 154.92 28 T1 160.80 29 T7 166.68	M17	M18 M19		M22	13 T4	38 T5 219.58 30 T6 226.45	2		Resultant forces:			

NYG 8:82013 8:82013 5 of 6																													845 MN 873 MN-m	1.00			15 MN 1379 MN		¥	0.53
Made by: Checked by: Sheet No.:			136.54 in 211270 kine	627992 kip-ft		0.00592	di Msi	_	54 4948 26 2156			24 2039		-61 -3088	53 5014 25 2007			54 4948 26 2156			39 3483 11 252				24 2039 501 c	-62 -3126	15810		189991 kips 643803 kip .ft				3406 kips 309901 kips	Load Contour Method	NA Kips NA NA	
ہ ک ے ج			a = 2						50 1098 13 1005			15 999			1125 70 1002			50 1098 13 1005			18 1064				15 999 26 881		2		Pny =	ex req/ ex res =		0.10, f cAg =	Pu = Po =	Load Co	Pr = Pu/Pr =	Mux/Mrx = Muy/Mry = IE =
eer Review apbeam Shear Key: Vuy max						ng strain:	xeff 🔬 fsi		158.03 0.00493 140.50 129.69 0.00439 125.13	0.00356	0.00273	128.43 0.00437 124.45	0.00358	0.00275	157.40 0.00492 140.16 129.06 0.00438 124.79	0.00357	0.00274	158.03 0.00493 140.50 129.69 0.00439 125.13	0.00383	0.00270	143.23 0.00465 132.48	0.00357	0.00303	0.00491	128.43 0.00437 124.45	0.00273				Ð		ed as a column:				
SFOBB Pe Pier E2 C LP C:	ance: Pny, Mny	Ë				Effective initial prestressing strain:	Name		B6.1 1 B6.2 1			B5.2 1			B4.1 1 B4.2 1			T3.1				T2.3				- 7 - 7					A 5 7 4 5	Minimum axial load to be considered as a column:	ad: istance:	biaxial flexure:	/ethod:	:thod:
Project: wooigen-wasters Subject:	- Minor-axis bending resistance: Pny, Mny	Eccentricity: Neutral axis depth:	Concrete forces		Tendon forces:	Effectiv	No.		- ~	IM	4	n u	7	8	0 (2 1	12	13	īτ	16	17	19	20	21	27 EC	23			Kesultant forces:		- Biaxial flexure check:	Minimum axial lo	Factored axial load: Nominal axial resistance:	Method to check biaxial flexure:	Reciprocal Load Method	Load Contour Method:
9																																				
5 8/8/2013 8/8/2013 6 of				25 mm 320 mm		193 MN-m		ar checking	52 MN-m	0.37			92 MN								39 MN		136 MN		43 mm 254 mm			158 MN	90.0		0 NN					70 MN 63 MN 0.07
Made by: NYG ##2013 Checked by: ##2073 ##2073 Sheet No.: 6 of		.u= 0.90	Acp = 51150 in2 pc = 906 in	0.98 in 25 12.60 in 320	46876 in2	6 kip-ft 193	31945 kip-ft 43		MN-m 52 MN-m	Tu ₆ Tn = 0.37 0KI 0.37			20662 Kips 92	=	Method = 2 A.5.8.4.3.2	217	dv = 189 In	tst average = 0.00134		0 = 33.7 5000	Kips 39		30588 Kips 136	90 deg				35407 Kips 158				2	bv = 236 in dv = 156 in	0.00000 = 0.00000	R= 4.800	

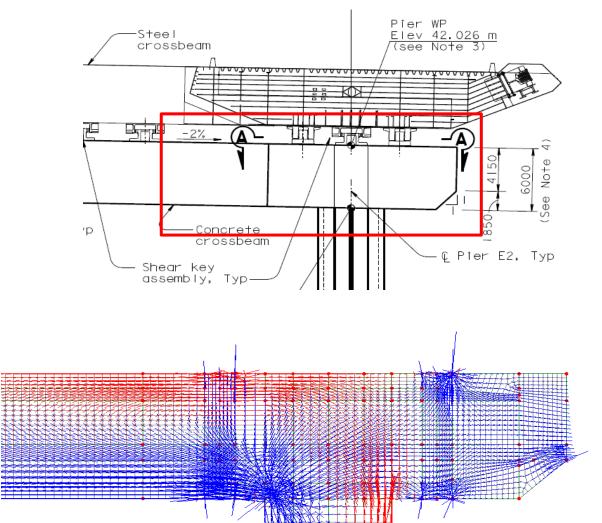
ContentsDescriptionSector NormSector Norm<	SrUBB reel Aeview Bior E3 Canhoam	ć	Made by:		NYG	8/8/2013	
cations:	11 Di	5°	Checked by: Sheet No -			8/8/2013	y
lal properties: te density: te density: te density: te density: te density: te density: te atensity: te atensity: Strand conservectional area: Minimum yield strength: Minimum yield strength: Minimum yield strength: Maximum stressing force per strand: % prestressing stress onsidering % prestressing stress onsidering % prestressing stress considering % prestressing stress of the transfer with % prestressing stress considering % prestressing stress considering % prestressing stress of the transfer with friction cefficient: % obble coefficient: % obsle coefficient: %		- AASHTO LRI	FD Design	Specs. 201	~	-	
ta properties: te density: te Zerdy compressive strength: cerement strength: Strand tross-sectional area: Minimum yield strength: Minimum yield strength: Minimum yield strength: Minimum stressing force per strand: % prestressing stress considering % prestressing stress considering % prestressing stress considering Max losses: % Effective prestressing stress considering % prestressing stress considering # friction coefficient: % Ductor coefficient: % Ductor and top of pier cap: frictivy between shaft and top of pier cap: % Ductor presenters: Ductor properties: 1 0.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.)				
te 28-day compressive strength: te 28-day compressive strength: Strand cross-sectional area: Minimum yield strength: Maximum stressing force per strand: % Freetressing stress after transfer with % prestressing stress after transfer with % prestressing stress considering % freetrive prestressing strain considering Max losses: % Effective prestressing strain considering % properties: % for a prestressing strain considering % for a prestressing strain consection % for a prestring prestressing strain consection % for a prestressing strain consection % for a prestring prestresection prestressing prestressing prestressing prestressing		- 200	0 15	krf		Metric 24	KN/m3
rcement strength: Strand cross-section: Strand cross-section: Maximum stressing stres arength: Minimum yield strength: Maximum stressing stress after transfer with Max losses: % Frefective prestressing stress considering % prestressing stress after transfer with wedge seting: Friction coefficient: wobble coefficient: wobble coefficient: Max losses: % Freetive prestressing strain considering Max losses: Friction coefficient: 	th:	f c =	∞	ksi		55	MPa
sing steel strand: sing steel strand: Maximum yield strength: Minimum yield strength: Maximum stressing force per strand: $\beta_{\text{prestressing}}$ stress considering $\beta_{\text{prestressing}}$ stress dire transfer with Max losses: $\beta_{\text{prestressing}}$ stress considering $\beta_{\text{prestressing}}$ stress considering $\beta_{\text{prestrictor}}$ stress considering $\beta_{\text{prestrictor}}$ stress considering $\beta_{\text{prestrictor}}$ stress considering $\beta_{\text{prestressing}}$ stress considering $\beta_{\text{prestressing}}$ stress considering $\beta_{\text{prestressing}}$ stress considering $\beta_{\text{prestressing}}$ section properties: $\beta_{\text{prestrictor}}$ section modulus β_{trend} section β_{trend}		fy =	60	ksi		414	MPa
Nation of Elasticity. Minimum yield strength: Minimum yield strength: Maximum stressing force per strand: Maximum stressing force per strand: Maximum stressing stress after transfer with See Effective prestressing stress considering wedge seating: Friction coefficient: Wobble coefficient: Maxielle for 0^{-1} Top fiber in tension) Ut-of-plane shear No. Plane-bending moment: (if >0 \rightarrow Top fiber in tension) Ut-of-plane shear No. No. Moment of inertia Section properties: Moment of inertia Section modulus Woth Homent of inertia Section modulus Womble tendon locations: Wob effect Womble tendon locations: Wobble tendon locations: Bos Bos Bos Bos Bos Bos Bos Bos B		Diameter =	0.60	.⊆ .		5 :	mm
Utimate tensile strength: Minimum yield strength: Maximum stressing force per strand: Maximum stressing stress after transfer with Max be prestressing stress after transfer with Max besses: Max max max max max max max max max max m		=	0.710	In Z		140	mm2
Minimum yield strength: Maximum stressing force per strand: % prestressing stress after transfer with % Effective prestressing stress considering % Nobble coefficient: % Location of tendon CG with respect to duct CG g offects at the section of maximum effect: % Axial (tr <0 → Tension) % Torsion % Concrete cover: % No. % Nob % Moment of inertia % No % Moment of inertia % No % Moment of inertia % No % Moment of inertia % Moment o		Fpu =	58.43	kips		260	KN
Minimum yield strength:: Maximum stressing force per strand: ft Maximum stressing stress considering Max losses: % prestressing stress considering Max losses: % ffrective prestressing strain considering Max losses: % ffrective prestressing strain considering Max losses: % ffrective prestressing strain considering Max losses: % wedge seating: friction coefficient: Max losses: % wedge seating: friction coefficient: Max losses: % wedge seating: friction coefficient: Max losses: % wedge seating: friction coefficient: Max losses: % bout coefficient: Max losses: losses: % forget seating: friction coefficient: Max losses: % location of tendon CG with respect to duct CG Max losses: friction coefficient: % location friction modeling moment: friction coefficient: Max losses: % geretion location friction modeling Max<		fpu =	269	ksi		1858	MPa
Maximum stressing force per strand: f_1 % prestressing stress after transfer withMax% prestressing stress after transfer withMax% frective prestressing stress after transfer withMax% frective prestressing stream consideringMax% frective prestressing strain consideringMax% belowSees:friction coefficient:Maxwedge seating:Firition coefficient:wobble coefficient:Maxwobble coefficient:Maxwobble coefficient:Maxwobble coefficient:Maxwobble coefficient:Maxwobble coefficient:Maxwobble coefficient:Maxwobble coefficient:Maxwobble coefficient:Maxwobble coefficient:MaxwobbleMaxwobbleMaxstressionMaxficity between shaft and top of pier cap:ficity between shaftMaxficity between shaftMaxficity between shearMaxIn-plane shearMonoentficity between shearMaxIn-plane shearMonoentficity between shearMaxficity ficityMaxficityMaxficityMaxficityMax		Fpy =	52.58	kips		234	KN
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	strond.	Fn mav -	90% 43 87	tpu kine		195	N
% prestressing stress after transfer with wax losses: % Effective prestressing strain considering Max losses: Wedge seating: Friction coefficient: Woobble coefficient: Woobble coefficient: Woobble coefficient: Woobble coefficient: Woobble coefficient: Succ diameter: Location of tendon CG with respect to duct CG glocation: ficity between shaft and top of pier cap: ricity between shaft and top of pier cap: ficity between shaft and top of pier cap: nicity between shaft and top of pier cap: ficity between shaft and top of pier cap: nicity between shaft and top of pier cap: Axial (tr <0 > Tension) In-plane shear No. Axial (tr <0 > Tension) Out-of-plane shear In-plane shear No. No. No. No. No. No. No. No.		fp jacking =	75%	fpu		2	ž
% Effective prestressing streas considering Max losses: Weedge seating: Triction coefficient: Wobble coefficient: This: Duct diameter: Location of tendon GG with respect to duct GG g location ficity between shaft and top of pier cap: ricity pier cap and top of pier cap and top	Max losses:	fpt =	67%	fpu			
$\label{eq:constraint} \end{tabular} t$	Max	fpe =	63% 0.00E03	fpu			
Friction coefficient: wobble coefficient: s: Duct diameter: Location of tendon CG with respect to duct CG g location: ficity between shaft and top of pier cap: ricity between shaft and top of pier cap: ficity between shaft and top of pier cap: Out-of-plane bending moment; (fi >0 - Top fiber in tension) Out-of-plane bending moment; In-plane sheat In-plane bending moment; In-plane bending moment; In-plane sheat In-plane bending moment;	NIGN		0.39	.9		10	mm
wooble coerticient: wooble coerticient: Duct diameter: Location of tendon CG with respect to duct CG g location: ricity between shaft and top of pier cap: ricity between section ricity shaft and top of pier cap: ricity section modulus section ricity and		=	0.15	/rad		0.15	/rad
Duct diameter: Location of tendon CG with respect to duct CG g location: ricity between shaft and top of pier cap: ricity between shaft and top of pier cap: g effects at the section of maximum effect: $dut-of-plane shear In-plane shear In-plane shear Out-of-plane bending moment: (f > 0) \rightarrow Top fiber in tension)Out-of-plane bending momentTorsionp$ section properties: h. h. h. h. p section from cap end width h.		11 X	0.000201	ŧ		0.00066 /m	Ę
g location: ricity between shaft and top of pier cap: ricity between shaft and top of pier cap: Axial (t <0 \rightarrow Tension) In-plane shear Axial (t <0 \rightarrow Tension) In-plane shear In-plane shear In-p	respect to duct CG	= OD = 7	5.51 0.47	.⊆ .≘		140	mm
g location: field: r^* (in) ricity between shaft and top of pier cap: $ge ffects at the section of maximum effect: g affects at the section of maximum effect: h_{raise} (if >0 \rightarrow Top fiber in tension) In-plane-bending moment: (if >0 \rightarrow Top fiber in tension) Dut-of-plane bending moment: (if >0 \rightarrow Top fiber in tension) Dut-of-plane bending moment: (if >0 \rightarrow Top fiber in tension) Dut-of-plane bending moment: (if >0 \rightarrow Top fiber in tension) Postion Postion p section properties: No. Postion Postion Concrete cover: Area Concrete cover: Area Concrete cover: Area Concrete cover: Area Section modulus *from bottom of gross section 3 86.2 *from bottom of gross section 3 $			t.o	=		4	
<i>g effects at the section of maximum effect:</i> Axial ((t < 0 → Tension) Un-plane shear Out-of-plane shear Out-of-plane shear Out-of-plane bending moment: (if >0 → Top fiber in tension) Torsion Torsion Torsion P section properties: No. No. No. No. No. No. No. No. No. No.	of pier cap:	e1 =	39.17	.⊑		<u> 365</u>	mm
n of maximum effect: nnent: (if >0 → Top fiber in tension) ig moment and ct to left bottom corner) ct to left bottom corner) setion 2 B6.1 - 2575 setion 2 B6.2 - 2575 B6.3 3 1803							
an of maximum effect: an of maximum effect: V_{VV} = V_{VV}		Maximum	n <mark>Shear Key: F</mark> PT + EQ + DL	L min		PT + EQ + DL	۲ ۲
n) Vuy= ment: (fr >0 → Top fiber in tension) Vux= V	aximum effect:		 	I		, , ,	I
or tites and the second of th		= n4	46182	kips		206 206	ZZ
and (if >0 → Top fiber in tension) Mux = Tu =		Vuy =	20330 1840	kips kins		£ ∝	N N
g moment Tu = tu	(if >0 \rightarrow Top fiber in tension)	= xnW	866517	kip-ft		1177	MN-m
nd x nd x Res Res Res Res Res Res Res Res State State State State S	ent	Muy = Tu =	23576 24111	kip-ft kip-ft		88	MN-m MN-m
Location =							
Location =			-				
to left bottom corner) to left bottom corner) to left bottom corner) No. Name x* (in) y**(in) No. Name x* (in) y**(in) sx = 5y = 5		Location =	- X				
to left bottom corner) to left bottom corner) No. Name x* (in) y**(in) No. Name x* (in) y**(in) sx = 5 sx							
to left bottom corner) to left bottom corner) No. Name x* (in) y**(in) No. Name x* (in) y**(in) sy = 5y =		۳ × د	30.51	ft 200		9298	шш
to left bottom corner) to left bottom corner) No. Name x* (in) x**(in) No. Name x* (in) x**(in) 86.1 - 54.09 22.60 86.3 18.03 22.60		Ω T Π	2.912	208	<u> </u>	0009	
to left bottom corner) A = A = yc		Top = Bottom =	4.33	. 9. 9.		110	5 E E
to left bottom corner) X = X = X = X = X = X = X = Y = X = Y			4.33	⊑		011	E
to left bottom corner) x = x =			Gross	Eff at _{so} u	<u>, cui</u>		
x = x = x = x = x = y = x =	ft bottom corner)	- = X	118.110	114			
Iy = Iy = Sx = Sy		= = X X = .	108 237848451	104 204127410			
Sy = 5y = No. Name x* (in) y**(in) 1 B6.1 -54.09 22.60 B6.3 18.03 22.60		= 1 <u>></u> 3	199858768	170338765	in4		
No. Name x* (in) y**(in) 1 B6.1 -54.09 22.60 1 B6.2 -25.75 22.60 3 B6.3 18.03 22.60		Sy =	2013784 1845968	1794061 1638865	in3		
1 B6.1 -54.09 section 2 B6.2 -25.75 3 B6.3 18.03	Name		Strands	Area (in2)	~	x (mm) y (mm)	y (mm)
B6.3 18.03	B6.1 B6.2		36 37	7.81 8.03	0.25	-1374 -654	492 492
B6.4 61.81	B6.3 B6.4		37 36	8.03 7.81	0.25	458 1570	492 492

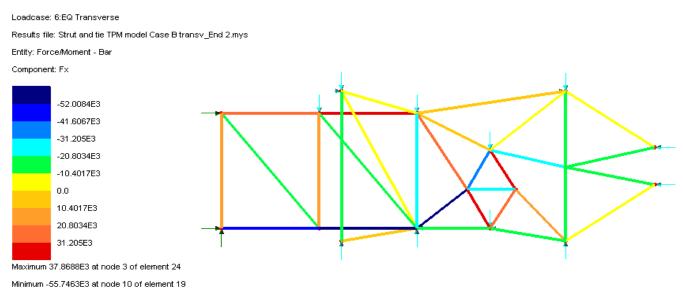

8/8/2013 8/8/2013 7 of 6		-1342 634 5-2 524					442 822 1E4 822							1162 5317 -1342 5317		66 5317 1571 5317		db (mm) y (mm)		57 462	57 611 53 55					57 1656											43 3896					43 4791 /3 /471				57 5687
NYG		7.81 0.43		7.81 0.43			8.03 0.48						8.03 0.12	8.03 0.12 7.81 0.00			190.96 0.25	Area (in2)	79.10	79.10	47.46	47.46 47.46	47.46	55.37	75.37	55.37	13.51	13.51	13.51	13.51 13.51	13.51	13.51	13.51	13.51	13.51	13.51	13.51	13.51	19.78	13.51	13.51	13.51 13.51	13.51	13.51	142.39 110.75	106.79
Made by: Checked by: Sheet No -	SUPPLIAD SUPPLIAD	36 27					78 76		37			ی ۲۶		37 36		37 36	. <u>5</u> .5	0	2 2	20	5 5	2 2				1	ن م	م ہ	9	ى م		<u>ن</u> ی	ی م			<u>ی</u> م						u u				12
	I	83 28.19		55 28.19			40 35.59					04 211.61 04 04 04 04 04 04 04 04 04 04 04 04 04		75 211.61 83 211.61		0 211.61 85 211.61	58 119.29 58 1.18	in) y**(in)				4 29.92 4		4 47.58			9 71.09				9 106.36		9 123.99				9 153.38					9 188.64	- (N			4 223.91
Dumin	ru min	B5.1 -52.83		B5.4 60.55			B4.3 17.40	T3.1 -54.09						T2.4 45.75 T1 1 -52.83		T1.3 2.60 T1.4 61.85	Centroids = -0.58 Eccentricity = -0.58	ē	B1 2.24 B2 2.24					B8 2.2		B11 2.24		M3 1.69		M6 1.69 M6 1.69			M10 1.69		M12 1.69		M15 1.69		17 27			M19 1.6				T5 2.24 T6 2.24
SFOBB Peer Review Pier E2 Capbeam LB	YIER NEW	ις v	0 -	~ 00	6	10	= ;	4 C	14	15	16	18	19	20	52	23 24	ш	.oN :suc	- 2	m	4 r	n u	2	80 (ۍ 1 ط	: =	2 ;	14	15	16	18	19	07 12	22	23	24 25	26	27	87 67	0 M	31	22 23	34	35	36 37	38
Project: <i>SFOB</i> Subject: <i>Pier E</i>	CONTENTS																	- Longitudinal reinforcement locations:	**from bottom of aross section	'n		14	18																							

8/8/2013 8/8/2013	3 of 6				~	-2 MN-m	E3 MM	1171 MN-m			35.6 MPa			-30.5 MPa	55%										5280 mm	5/80 mm																			
Made by: <u>NYG</u> Checked by:	Sheet No.:		0:90		32218	Mux = -31/1 kip-ft Muy = -1551 kip-ft	13061			Bii/A = 0.003 kg		0.153		_	5.t %cc	Strain compatibility	Uncontined		Rectangular	R = 0.65	fic= 8 ksi		Paulay and Priestly, pag. 98	5422	b = 208 in	228		10 112	ey = 741.91 in c = 72.29 in	46.99		Mc = 499716 kip-ft		_{₽0} = 0.00592	Tsi di Msi	kips in	653 -96 671 -06	671 -96	653 -96	722 -90 742 -90	742 -90	722 -90 -5409 836 -83 -5746	836 -83	836 836	2052 88
SFOBB Pe Pier E2 C	www.mwww.content: LB: Shear Key: Pu min	5 Check for axial and flexural force effects:	- Resistance factor: A.5.10.11.4.1b	. I narline affects	1 Prestressing loading effects:		2 Nat Insiding affacts:			3 Total loading stresses:						- Analysis approach:	- Concrete behavior assumptions:		Stress distribution: A.5.7.2.2		Compressive strength:	Ultimate compression strain:	* Seismic Design or Keinforced Concrete and Masonty Buildings, Paulay and Priestly, pag. 98 Ignore concrete cover for calculations at this strain level	Modulus of Elasticity: A.5.4.2.4-1	Effective section properties:		- Major-axis bending resistance: Pnx, Mnx	T and the second se	eccentricity: Neutral axis depth:		Concrete forces:		Tendon forces:	Effective initial prestressing strain:	No. Name veff 🔜 fsi	, E	B6.1 18.27 0.00294	B6.3 18.27 0.00294	B6.4 18.27 0.00294		B5.3 23.86 0.00324	23.86 0.00324 31.26 0.00365	B4.2 31.26 0.00365	B4.3 31.26 B4.4 31.26	T3.1 201.69 0.01309
8/8/2013 8/8/2013	4 of 6																																									04 IVIN 1577 MN-m	00	1.00	
Made by: <u>NYG</u> Checked by:	Sheet No.:	2109 88 15451 2109 88 15451		94 04	64		94			Ť	kips in kip-ft	-112	-106	-94	-2848 -88 20922 -2848 -82 19528	-76		-59	ü, î	- 120 -4/ 469 8 -41 -26		67-	-24 -18	-12	ې	810 0 0 810 6 397	12	18 1	810 24 1588 810 29 1984	35	47	1187 53 5231 810 59 3969	65	71	810 82 5557	88	8543 94 66951 6645 100 55328	106	6407 112 59629 13500 536046		18801	1162370	ey = 741.92 in		
SFOBB Peer Review Pier E2 Capbeam	Shear Key: Pu min	201.69 201.69	201.69 0.01309 207.28 0.01339	207.28 0.01339 207.28 0.01339	207.28 0.01339	207.28	207.28 0.01339 207.28 0.01339			the second se	in pair	2.11 -0.00388	7.98 -0.00323 13.86 -0.00323	19.74 -0.00291		37.37 -0.00193	43.25 -0.00161 49.13 -0.00128	55.00 -0.00096	60.88 -0.00063	2 72.64 0.00002 0.56	78.51 0.00034	84.39 0.0006/	96.15	102.02 0.00165	107.90 0.00197	113.78 0.00230 119.66 0.00262	125.53 0.00295	131.41 0.00327	143.17	149.04 0.00425 154.02 0.00457	160.80 0.00490	166.68 0.00522 172.55 0.00555	178.43 0.00587	184.31 0.00620	196.07	201.94 0.00717		219.58 0.00815	225.45 0.00848					ra la	
	Content: <u>1</u>	14 T3.2 15 T3.3				21 11.1 22 T1.2			Reinforcement forces:			- ·	3 R	4 B4	5 B5 6 B6		88 8 8 9 8	_		1 2		21 26								26 M15		29 T2 30 M17			34 M21		36 13 37 T4				Recultant forces:				

NYG 88/2013 88/2013 5 of 6																											1112 MN 535 MN-m		1.00		164 MN 62 MN 1379 MN		4	680 680
Made by: Checked by: Sheet No.:		18.93 267.40	= 173.81	Pc = 208949 kips Mc = 381763 kip-ft		76C00'0 =°4	si di Msi	L 12	26	-18 67	-02 53	24		5 CS	25		54		-63	39 11	-17	639 -46 -2436 050 53 4103	24	ņ	m		Pny = 249982 kips Mnv = 394291 kin-ft	18.93	res = 1.00		Ag = 36828 kips Pu = 13964 kips Po = 309901 kips	Load Contour Method	Pr = NA Kips Buder = NA Ma	0.06 0.06 0.09
min							Jai fsi Tsi Jai Jai	KSI KI 0.00429 122.13 95	110.05	0.00321 91.40 73	121.59	109.51	0.00323 91.94 73 0.00257 73.29 57	121.86	109.78	0.00256 73.02 58	122.13	c0.011	72.20	0.0040/ 115.82 93 0.00364 103.74 83	91.67	0.002/9 /9.59 63 0.002/101 FC 63	109.51	97.97	0.00255 /2./3 568 1896		- 2	:	ex req/ ex res =		olumn: 0.10 ₄ f ¹ cAg = Pu = Po =		đ	Mux/Mrx = Muy/Mry = IE =
tt: <i>SFOBB Peer Review</i> tt: <i>Pier E2 Capbeam</i> nt: <u>LB: Shear Key: Pu min</u>	stance: Pny, Mny	ith:				Ellective initial prestressing strain:	Name	B6.1 158.03	B6.2	B6.3 85.91 B6.4 A2 13	B5.1	B5.2	B5.3 B5.4		B4.2	B4.4 B4.4	T3.1		T3.4	T2.1 T2.2	T2.3) T2.4 58.19	T1.2	T1.3	t T1.4 42.09					A 5 7 4 5	Minimum axial load to be considered as a column: Factored axial load: Nominal axial resistance:	Method to check biaxial flexure:	Method:	lethod:
Project: wco.ispo-warths Lubject:	- Minor-axis bending resistance: Pny, Mny	Eccentricity: Neutral axis depth:		Concrete Torces:	Tendon forces:	EIIECI	No.	_	5	ω <	1 10	Q	8	יס	2 :		10		16	7 22	51	7	22	2	77		Resultant forces:			- Biaxial flexure check:	Minimum axial load to b Factored axial load: Nominal axial resistance:	Method to chec	Reciprocal Load Method:	Load Contour Method:
و																																		
<i>8/8/2013</i> <i>8/8/2013</i> 6 of				25 mm 320 mm			43 MN-m 33 MN-m		47 MN-m 0.69				11 MN							31 MN		NIN 471		254 mm		139 MN	0.65			0 WN				70 MN 63 MN 0.12
ч —		, ¹ = 0.90	Acp = 51150 in2 pc = 906 in	0.98 in 25 12.60 in 320	Ao = 46876 in2 ph = 867 in	141976 kip-ft 193			ITn= 34837 kip-ft 47 MN-m Tui-Tn= 0.69 OKI 0.69			20336 Kins	Kips 11	ſ	Method = 2 A.5.6.4.5.2 bv = 217 in	dv = 189 in	** AND *********************************		0 = 36.2	Kips 31			1.69 in 43	10.00 in 254	20	31305 Kips 139	Vur _{ch} /n = 0.65 OKI 0.65		œ	0 Kips	Method = 2 A.5.8.4.3.2 bv = 236 in dv = 156 in	鳥 average = 0.00000	P= 4.800	

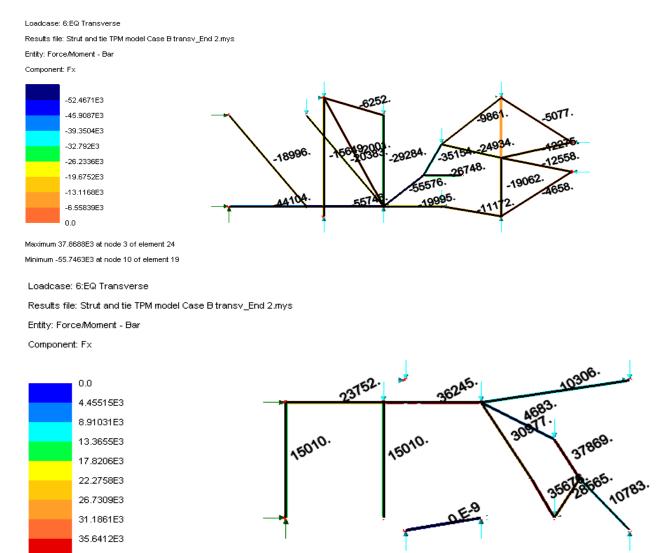
Appendix 5


Strut-and-Tie Model Calculations


0 Specifications:

AASHTO LRFD Design Specs. 2012

1 Principal Stress Directions from FEM



2 Strut-tie Model:

	Project:	SFOBB Peer Review		Made by:		NYG	8/8/2013	}
MODJESKI	Subject:	Strut and tie models: LP B_Transve	erse	Checked by:			8/8/2013	}
Experience great bridges.	Content:	Pier E2 Cap: Bearings-column regi	on	Sheet No.:			3 of	7
3 Boundary forces	:				US		Metric	
- Column:	Moment: Axial force Distance b	: etween resultant internal forces:			641000 25145 9.088	kip-ft kips ft	870 112	MN-m MN
	Shear forc				13483	kips	60	MN
	Effective c Effective T	ompression: ension:			83105 -57960	kips kips	370 -258	MN MN
- Longitudinal Post-	tensionina fo	orces:						
	Total poste	ensiong force at service: Its where the load is applied:			32121 2	kips	143	MN
		oints of application:			16061	kips	71	MN
- Bearing forces inc	luding PT fo	rces:	Тор	Hor. = Vert. =	6853 -19344	kips kips	30 -86	MN MN
			Bottom	Vert. =	15649	kips	70	MN

4 Model forces:

Maximum 37.8688E3 at node 3 of element 24 Minimum -55.7463E3 at node 10 of element 19

Project:	SFOBB Peer Review	Made by:	NYG
Subject:	Strut and tie models: LP B_Transverse	Checked by:	
Content:	Pier E2 Cap: Bearings-column region	Sheet No.:	

8/8/2013

8/8/2013

of

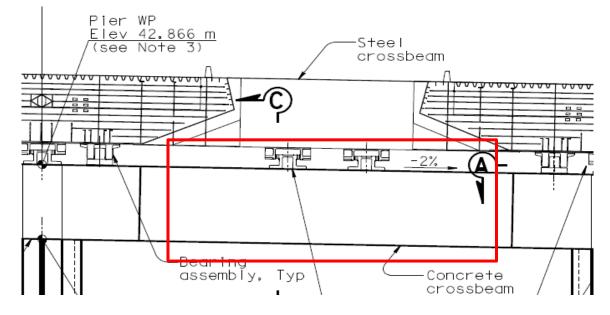
7

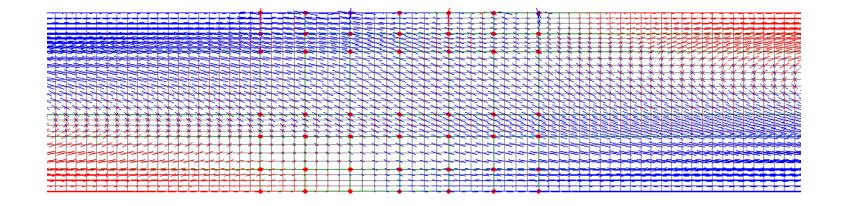
4

5 Checks:

- Compressive struts:

- Compressive struts:						
Effective cross sectional area of critical strut:		Acs =	13387.86	in2		
Diameter of the reinforcement that anchors	the strut.	db =	2.24	in	57	mm
Distance between longitudinal bars in the co		s =	78.74	in	2000	mm
Horizontal projection of Width of strut:		la =	105.67	in	2684	mm
Inclination of strut:		θs =	40.29	deg	2001	
Width of strut:		b1 =	68.33	in		
Depth of strut:		51	00.00			
Assume an average width of cap beam b	between column and bearings	d =	195.93	in	4976.5	mm
	-					
Limiting compressive stress in the strut:		fcu =	6.80	ksi		
Compressive concrete strength:		f'c =	8	ksi		
Angle between strut and adjoining tie:		α =	79.71	deg		
Tensile strain in the concrete in the direction	n of tie:					
Assume prestressing compression has n	ot been exceeded	ε s=	0.0000			
		= 3	6.59E-05			
Resistance Factor:		φ =	0.70			
Strut compressive resistance:		∳Pn =	63726	Kips	284	MN
Critical Compression:		Pu =	55576	Kips	247	MN
		D/C =	0.87	OK!		
- Tension ties:						
Area of longitudinal steel reinforcement in tie:		Ast =	852.90	in2	If uncut	
		7101	677.97	in3	If all cut	
			011.01	ino	in an oat	
Column vertical reinforcement:	M bars:	db =	2.24	in	57	mm
	in bare.	n =	96		If uncut	
			66		If all cut	
		db =	1.69	in	43	mm
		n =	72		If uncut	
			51		If all cut	
	N bars:	db =	1.69	in	43	mm
	it baro.	n =	20		If uncut	
			16		If all cut	
Cap beam stirrups and bars:		db =	1.69	in	43	mm
Odp beam sandps and bars.		n =	102			
		db =	0.98	in	25	
		ub = n =	48		25	
		11 -	40			
Yield strength of reinforcement:		fy =	60	ksi		
Resistance Factor:		φ =	0.90			
- · / · · · /		. –	400		~~~	
Tie tensile resistance:		φPn =	46057	Kips	205	MN
Critical Tanaian			36610	Kips	163	MN
Critical Tension:		Pu =	55634	Kips	248	MN
		D/C =		NG	If uncut	
		D/C =	1.52	NG	If all cut	

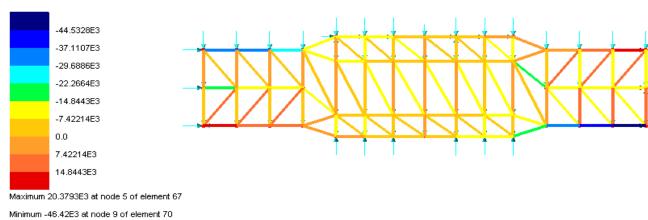

roject:	SFOBB Peer Review
ubject:	Strut and tie models: LB_Transverse
ontent:	Pier E2 Cap: Interior shear keys region


Made by:	NYG 8/8/2013				
Checked by:	8/8/2013				
Sheet No.:	5 of 7				

0 Specifications:

AASHTO LRFD Design Specs. 2012

1 Principal Stress Directions from FEM

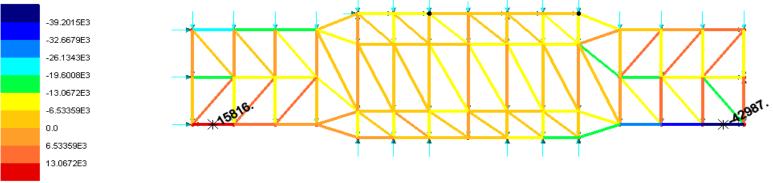

2 Strut-tie Model:

Loadcase: 6:EQ Transverse

Results file: Strut and tie TPM model Case C transv_Middle.mys

Entity: Force/Moment - Bar

Component: Fx


	Project:	SFOBB Peer Re		Made by:		NYG			
MODJESKI	Subject:	-		· · · · ·					
Experience great bridges.	Content:	Pier E2 Cap: Inte	erior shear keys region	Sheet No.:			6 of	7	
					US		Metric		
3 Boundary forces	:								
- Column:	Moment:				322754	kip-ft	438	MN-m	
	Axial force	:	Notes: LB_Transverse Interior shear keys regionChecked by: $& & & & & & & & & & & & & & & & & & & $	MN					
	Distance b	between resultant i	internal forces:		13.15	ft			
	Shear force	e:			12424.3	kips	55	MN	
	Effective of	compression:	top		17868.5	kips	80	MN	
	Effective 7	•	•			•	-139	MN	
- Longitudinal Post-	tensioning f	orces:							
5	•	ensiong force at se	ervice:		32121	kips	143	MN	
	No. of poir	nts where the load	is applied:		3	•			
	Midpoint:				16061	kips	71	MN	
	End points	S:			8030	kips	36	MN	
- Shear key forces i	- Shear key forces including PT forces:		Midpoint:	Hor. =	2284	kips	10	MN	
	Ū.		·	Vert. =	0	kips	0	MN	
			Lateral point a:	Hor. =	1142			MN	
			·	Vert. =	1641	kips	7	MN	
			Lateral point b:	Hor. =	1142	•	5	MN	
				Vert. =		•		MN	
- Shear key forces I	PT forces:			P/2 =	13538	kips	60	MN	
				P/4 =	6769	kips	30	MN	

4 Maximum Model Forces:

Loadcase: 6:EQ Transverse

Results file: Strut and tie TPM model Case D transv_Middle.mys Entity: Force/Moment - Bar

Component: Fx

Maximum 15.8155E3 at node 5 of element 67 Minimum -42.9867E3 at node 9 of element 70

MODJESKI and MASTERS Experience great bridges.	Project:	SFOBB Peer Review	Made by:	NYG		8/8/2013	
	Subject:	Strut and tie models: LB_Transverse	Checked by:			8/8/2013	
	Content:	Pier E2 Cap: Interior shear keys region	Sheet No.:			7 of	7
Checks:							
Compressive strut	ʻs:						
Critical Compressi	ion:		Pu =	42987	Kips	191	MN
Limiting compress	ive stress in	n the strut:	fcu =	6.80	ksi		
Compres	sive concre	te strength:	f'c =	8	ksi		
		and adjoining tie:	α =	90.00	deg		
		concrete in the direction of tie:	=l3	7.5E-36			
Assum	e prestress	ing compression has not been exceeded	ES=	0.0000			
Resistance Factor	:		φ =	0.70			
Reinforcement in direction of strut:			Ts =	17087	Kips		
			db =	2.24	in	57	mm
			N =	72			
			fy =	60.00	ksi		
Required cross se	ctional area	a of critical strut:	Acs =	5800.22	in2		
Depth of			d =	154.72	in	3930	mm
	width of str	ut:	b1 =	37.49	in	952	mm
·		Required width is similar to the distar	ce over which the re	inforceme	nt is distrib	uted ∴ OK	!
Tension ties:							
Area of longitudina	al steel reint	forcement in tie:	Ast =	314.96	in2		
			db =	2.24	in	57	mm
			n =	72			
			db =	1.69	in	43	mm
			n =	8			
			db =	0.98	in	25	
			n =	16			
Yield strength of re	einforcemer	nt:	fy =	60	ksi		

Effective prestressing stress:

Resistance Factor:

Tie tensile resistance: Critical Tension:

fpe = 169.47 ksi