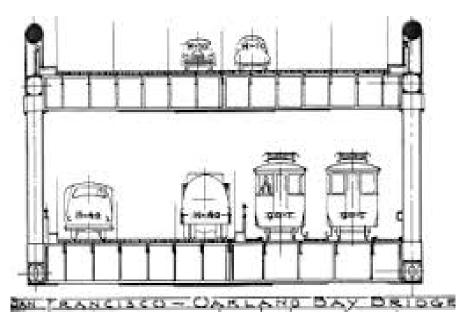


## SAN FRANCISCO-OAKLAND BAY BRIDGE (SFOBB) METERING LIGHTS SYSTEM UPGRADE PROJECT

24<sup>TH</sup> ANNUAL ITS CALIFORNIA CONFERENCE October 1, 2018


# **Presentation Outline**

- Introduction and Background
- Project Objectives and Scope
- Existing System
- Simulation Modeling
- Proposed System
- Project Challenges
- Project Status





## SAN FRANCISCO - OAKLAND BAY BRIDGE



Historical Photo Showing Railroad On Lower Deck Source: California Highways and Public Works Magazine, Digitized By Internet Archive.

A Few Bridge Facts:

- 1936 Bridge opens to traffic
- 1958 Bridge lanes reconfigured (vehicles/upper and lower decks)
- 1974 metering sys installed to regulate traffic on the Bridge
- 2013 East Span Bridge open to vehicles





# Toll Plaza Background

#### 130,000 to 140,000 vehicles per day

Toll plaza has 20 approach lanes:

- 16 cash/ FasTrak® lanes
- 2 dedicated FasTrak®/ORT lanes
- 2 dedicated bus-only/HOV lanes

Metering Lane Configuration:

- 20 toll lanes converge to 16 lanes at metering lights approximately 1,000 feet west of the toll plaza
- 16 metered lanes further converge to 5 lanes across the bridge
- During HOV hours, 12 metered lanes converging to 4 lanes on bridge – 2 bus only lanes not metered that converge to 1 lane on bridge







## Toll Plaza at 5:20am

## Toll Plaza at 5:30am







# Metering Lights Approach







# Existing Metering Lights System

- System first deployed in 1974
- Basically the same metering system with few technology upgrades
- Metering rates are manually controlled and implemented from the District 4 TMC
- Not capable of automatically responding to changes in traffic conditions and queuing
- The back up system is to conduct manual operations from the controller cabinets in the field





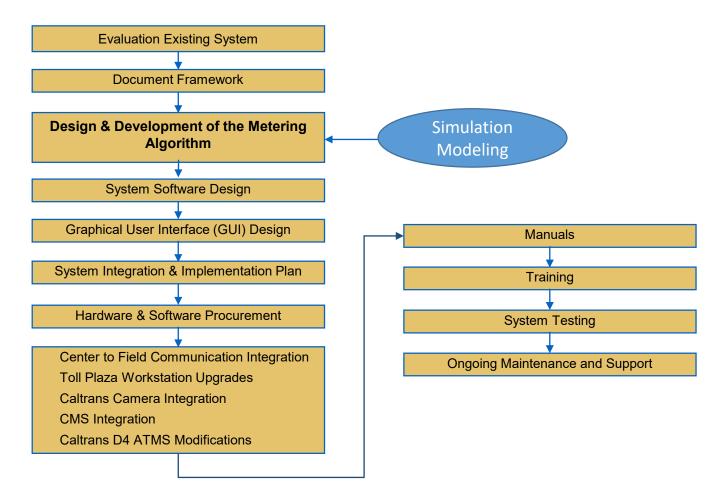
# Project Objectives

Implement a metering system that:

- optimizes the bridge's current capacity
- adapts to changing traffic conditions(i.e. accidents, reoccurring and non-reoccurring)
- reduces queuing at the toll plaza
- accommodates differential metering rates for different lane configurations and classes of users (buses, HOV, FasTrak<sup>®</sup>, and cash lanes)
- improves traffic operations and vehicle flow along the corridor
- provides for redundancy in the event of component failures



# Scope of Work Overview


- Replace and upgrade the existing metering system software and hardware system (cabinets, controllers, servers, CMS, etc.)
- Implement a fully automated and adaptive mainline metering system algorithm
- Provide redundancy via a backup TMC at the Toll Plaza Building
- Upgrade associated communications network and vehicle detection systems



- District 4 ATMS integration (ML System, CMS, loop detectors, CCTV)
- Utilize existing traffic monitoring stations in the vicinity of the Toll Plaza
- Repair or close existing gaps in the communications system



# **Project Flow Overview**

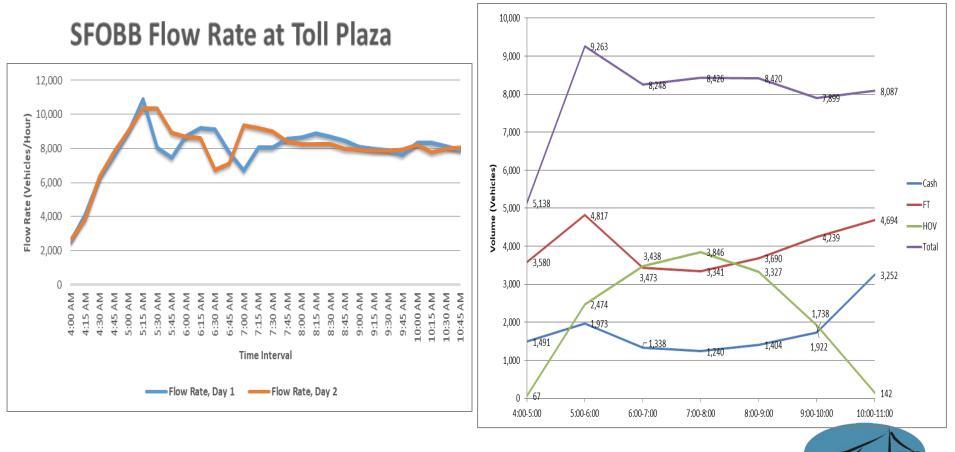






# Data Collection

- Toll Volume (BATA)
- Traffic Volume (Caltrans)
- Metering Logs (Caltrans)
- Travel Time/Delay collected in 2016 and 2017





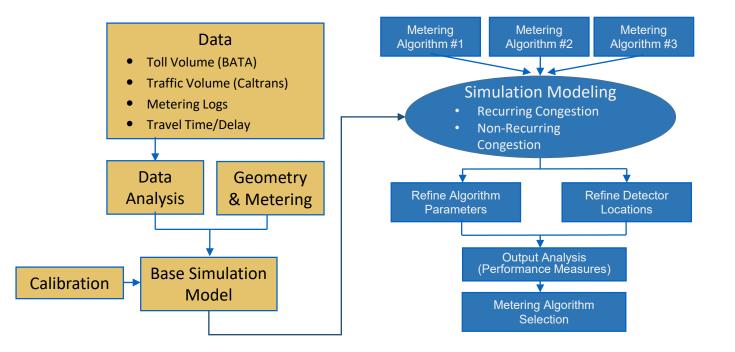

# **Existing Traffic Volumes**

## **Toll Plaza Volumes**

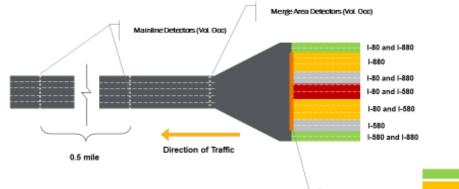
BAY AREA TOL






# Metering Logs




# Simulation Modeling Process

LAN COPY IN /

Tate 11 all







Metering Lights

## Physical and Operational Considerations

#### To Consider

- · Differential metering rates for FASTRAK and Cash
- · Lane assignment based by TOD
- · Traffic condition on the bridge
- · Traffic condition at the merging area
- · Traffic condition upstream and detectors



HOV FASTRAK only

FASTRAK peak + Cash off-peak

FASTRAK + Cash



## Metering Lights Algorithm Performance Measures

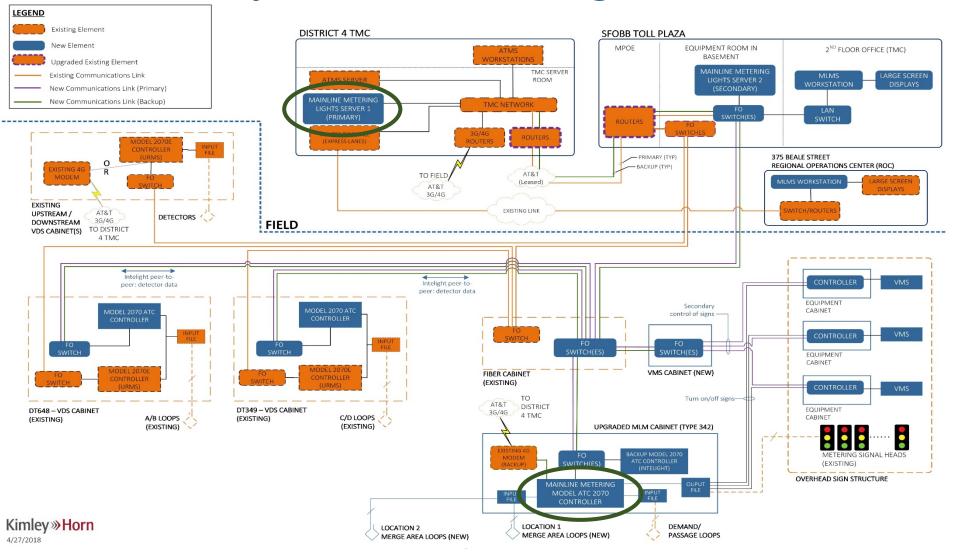
- Throughput
- Travel Time
- Delay
- Recurrent Congestion
- Non-Recurrent Congestion



## Simulation Results (Recurring Congestion)

| Algorithm | Throughput | Improvement | Delay | Improvement | Travel time | Improvement |
|-----------|------------|-------------|-------|-------------|-------------|-------------|
| Existing  | 41099      |             | 10.54 |             | 24.23       |             |
| Alinea    | 44059      | 7.2%        | 7.3   | 30.7%       | 18.14       | 25.1%       |
| PI-Alinea | 43919      | 6.9%        | 7.29  | 30.8%       | 18.1        | 25.3%       |
| Fuzzy #1  | 43771      | 6.5%        | 7.04  | 33.2%       | 16.53       | 31.8%       |
| Fuzzy #2  | 44293      | 7.8%        | 8.06  | 23.5%       | 19.22       | 20.7%       |




## Simulation Results (Non-Recurring Congestion)

| Non-Recurring (1 lane blockage) |            |        |     |                 |                       |                     |             |                      |                      |              |              |              |
|---------------------------------|------------|--------|-----|-----------------|-----------------------|---------------------|-------------|----------------------|----------------------|--------------|--------------|--------------|
| Algorithm                       | Throughput | Impact | De  | elay <i>Imp</i> | act Travel            | time Impact         |             | Scenario             | Accident             | Number of    | Duration of  |              |
| Existing                        |            |        | 1   |                 |                       |                     |             | No.                  | Location             | Lanes Closed | Lane Closure | Time of Day  |
| Alinea                          | 43192      | 5.1%   | 7   | <b>.</b> .      |                       |                     | Dui<br>Lane |                      |                      |              |              |              |
| PI-Alinea                       | 42102      | 2.4%   | 10  | Scenario<br>No. | Accident<br>Location  |                     |             |                      | 1 Near YBI<br>Tunnel | 1            | 30           | 8:00-8:30 AM |
| Fuzzy #1                        | 42754      | 4.0%   | 7   | NO.             | Location              |                     | Lain        | 1                    |                      |              |              |              |
| Fuzzy #2                        | 44242      | 7.6%   | 8   |                 |                       |                     |             |                      |                      |              |              |              |
|                                 |            |        |     | 1               | Near YBI<br>Tunnel    | 1                   |             | 2                    | Near YBI<br>Tunnel   | 2            | 90           | 6:00-7:30 AM |
| Non-Recurring (                 |            | ng (   | 2   | Near YBI        | 2                     |                     |             |                      | 3                    | 35           | 6:55-7:30 AM |              |
| Algorithm                       | Throughput | Impact | De  | 2               | Tunnel                | 2                   |             |                      |                      |              |              |              |
| Existing                        |            |        | -   |                 |                       | 2                   |             | 3 Near YBI<br>Tunnel | 2                    | 15           | 7:30-7:45 AM |              |
| Alinea                          | 39158      | -4.7%  | 11. |                 | 3   Near YBI   Tunnel | 3                   |             |                      | Turmer               |              |              |              |
| PI-Alinea                       | 38269      | -6.9%  | 12  | 3               |                       |                     |             |                      | 1                    | 30           | 7:45-8:15 AM |              |
| Fuzzy #1                        | 38375      | -6.6%  | 10. | 3               |                       | īunnel <sup>2</sup> |             |                      |                      |              |              |              |
| Fuzzy #2                        | 39447      | -4.0%  | 11  |                 |                       | 1                   |             | 30                   | 7:45-8:15 AN         | 1            |              |              |

| Non-Recurring (3 lane blockage) |            |        |       |        |             |        |  |  |  |  |
|---------------------------------|------------|--------|-------|--------|-------------|--------|--|--|--|--|
| Algorithm                       | Throughput | Impact | Delay | Impact | Travel time | Impact |  |  |  |  |
| Existing                        |            |        |       |        |             |        |  |  |  |  |
| Alinea                          | 39650      | -3.5%  | 12.03 | -14.1% | 33.29       | -37.4% |  |  |  |  |
| PI-Alinea                       | 39210      | -4.6%  | 11.15 | -5.8%  | 28.15       | -16.2% |  |  |  |  |
| Fuzzy #1                        | 39363      | -4.2%  | 10.3  | 2.3%   | 25.57       | -5.5%  |  |  |  |  |
| Fuzzy #2                        | 39983      | -2.7%  | 11.51 | -9.2%  | 29.02       | -19.8% |  |  |  |  |



## System Block Diagram



# Mainline Metering Controller Firmware

## **Minimum Requirements**

- 1. Independently control up to 16 metered lanes
- 2. Open interface for control from central system
- 3. Supports national standard (i.e., NTCIP)
- 4. Support for Local Traffic Responsive mode by time of day
- 5. Support logging volume, occupancy and speed data to the local controller database
- 6. Provide reporting capability status, collected data, health
- 7. Pre-configured or user defined cabinet support



# Software/Firmware Candidates



#### **ULL WAPITI** Micro Systems



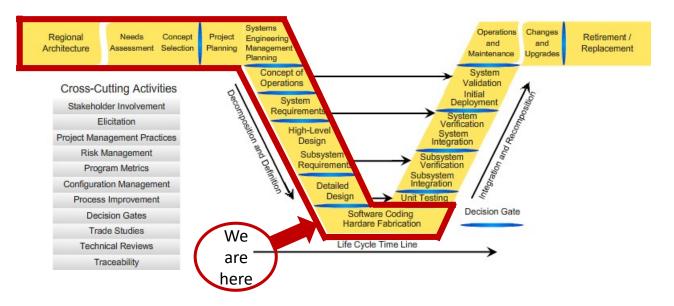
Solutions that Move the World®





| Controller Software/<br>Firmware   | Max Metered Lanes<br>Supported | NTCIP<br>(Y/N) |  |  |  |  |  |
|------------------------------------|--------------------------------|----------------|--|--|--|--|--|
| Western Systems / Siemens          |                                |                |  |  |  |  |  |
| SEPAC - Local Controller Software  | 16                             | YES            |  |  |  |  |  |
| Wapiti Micro Systems               |                                |                |  |  |  |  |  |
| W5-ACS - Adaptive Control Software | 16                             | YES            |  |  |  |  |  |
| Intelight                          |                                |                |  |  |  |  |  |
| Intelight MaxTime Ramp Meter       | 16                             | YES            |  |  |  |  |  |
| Econolite/Safetran                 |                                |                |  |  |  |  |  |
| ASC/3-2070 Controller Software     | 4 Meters x 4 Controllers       | YES            |  |  |  |  |  |
| Trafficware/Naztec                 |                                |                |  |  |  |  |  |
| SynchroGreen                       | 4 Meters x 4 Controllers       | YES            |  |  |  |  |  |
| McCain                             | •                              |                |  |  |  |  |  |
| Omni eX Software                   | 4 Meters x 4 Controllers       | YES            |  |  |  |  |  |




# **Proposed System**

- Metering Lights Server Fuzzy Logic #1
- Metering Lights Controller ATC 2070 with Intelight Firmware
- NTCIP 1207 (ramp meter systems) and 1209 (transportation sensor systems)
- Merge Area Detection (direct connect)
- Lane Group Metering Rate by Metering Lights Server
- Metering Rate implementation by Metering Lights Controller



# Systems Engineering Process

| Phase -1                                                      | Phase 0 | Phase 1                                                      | Phase 2                         | Phase 3            | Phase 4                                                          | Phase 5                               |
|---------------------------------------------------------------|---------|--------------------------------------------------------------|---------------------------------|--------------------|------------------------------------------------------------------|---------------------------------------|
| Interfacing with<br>Planning and the<br>Regional Architecture | and     | Project Planning and<br>Concept of Operations<br>Development | System Definition<br>and Design | and Implementation | Validation, Operations<br>and Maintenance,<br>Changes & Upgrades | System<br>Retirement /<br>Replacement |





# **Project Challenges**

- Technical Complications
  - Replacing/Enhancing five interconnected systems
    - Metering Lights System Software
    - Controller Firmware
    - Changeable Message Signs
    - Communications
    - Detection
  - No other examples in the world
  - Lane assignments (Fastrak, cash, HOV)
  - "Merge" area
- System Cutover
  - Redundant Systems
  - Significant Testing/Burn-in Period



# Key Activities Remaining

- Design and Development of Firmware in progress
- Detailed Design (PS&E) in progress 70% done
  - Additional Detection
  - Communications infrastructure
  - CMS installation
  - TMC in Toll Plaza Building
- Caltrans Encroachment Permit (PEER) in progress
- Environmental Revalidation winter 2018
- Prepare Integration, Implementation and Cutover Plans in progress 25

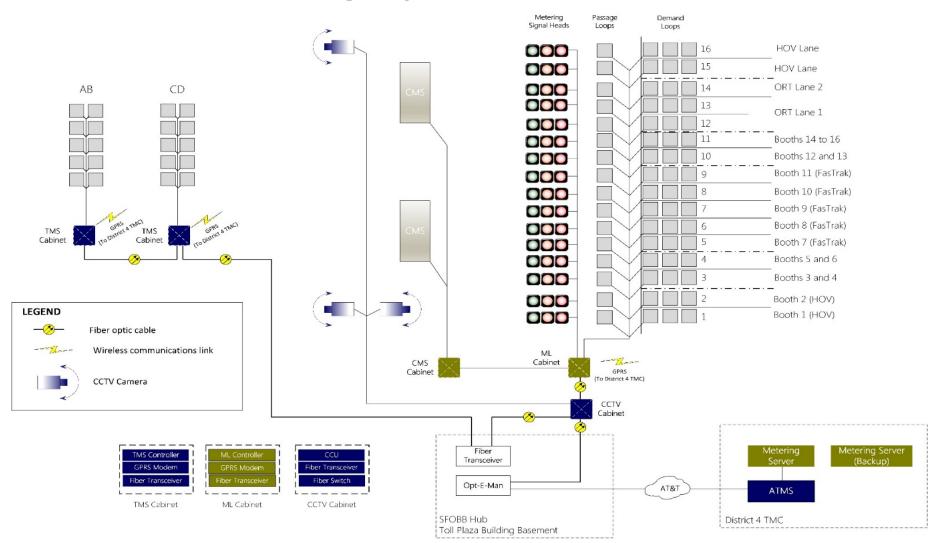
- CMS Procurement early summer 2019
- BCDC Permits
- Construction Manager Procurement early summer 2019
- Construction and Implementation early summer 2019
  - System Testing
  - Training
- Ongoing Maintenance & Support



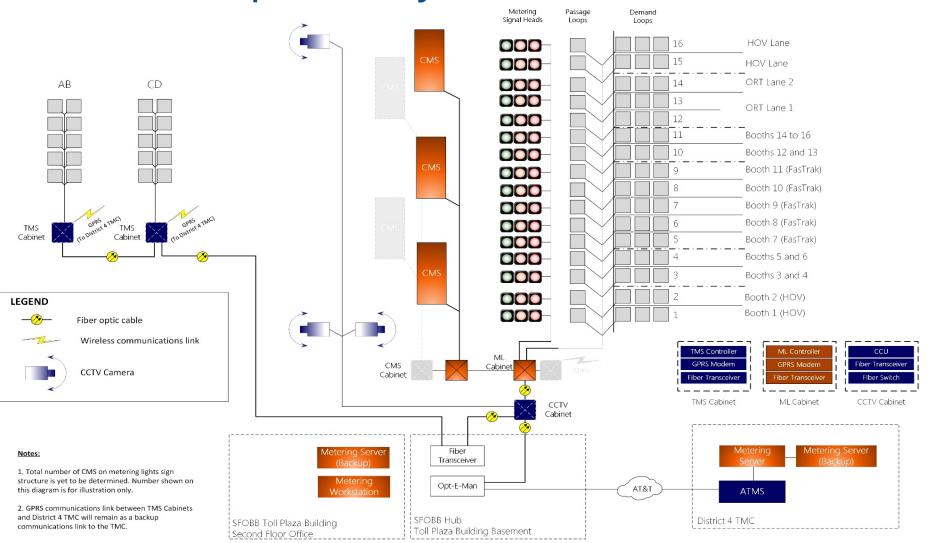
# Questions?






## SAN FRANCISCO-OAKLAND BAY BRIDGE (SFOBB) METERING LIGHTS SYSTEM UPGRADE PROJECT

24<sup>TH</sup> ANNUAL ITS CALIFORNIA CONFERENCE October 1, 2018


# **Algorithms Considered**

|                          |                      | Old<br>Algorithm                                                                     | ALINEA                                                                                                    | PI-ALINEA with RBL                                                                                                                                            | Bottleneck                                                                                                                                                          | CARMA                                                           | COMPASS                                                                                                                                                          | Fuzzy Logic Caltrans                                                                                                                                                        | Fuzzy Logic (Chen<br>et.al)                                                                                                                 |
|--------------------------|----------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| ns                       | Downstream           | ×                                                                                    | ×                                                                                                         | ~                                                                                                                                                             | ✓                                                                                                                                                                   | ✓                                                               | ✓                                                                                                                                                                | ~                                                                                                                                                                           | ✓                                                                                                                                           |
| Conditions<br>considered | Local                | ×                                                                                    | ~                                                                                                         | ✓                                                                                                                                                             | √                                                                                                                                                                   | ×                                                               | ✓                                                                                                                                                                | ~                                                                                                                                                                           | ✓                                                                                                                                           |
| COI                      | Ramp                 | ×                                                                                    | ×                                                                                                         | ×                                                                                                                                                             | ×                                                                                                                                                                   | ×                                                               | 1                                                                                                                                                                | √                                                                                                                                                                           | ×                                                                                                                                           |
| ſe                       | Volume               | HOV Lanes                                                                            | local                                                                                                     | ×                                                                                                                                                             | downstream                                                                                                                                                          | ×                                                               | upstream                                                                                                                                                         | ×                                                                                                                                                                           | ×                                                                                                                                           |
| Measure                  | Occupancy            | local                                                                                | local                                                                                                     | Local/downstream                                                                                                                                              | local                                                                                                                                                               | ×                                                               | downstream/ramp/local                                                                                                                                            | Local/ramp                                                                                                                                                                  | Local/downstream                                                                                                                            |
| W                        | Speed                | ×                                                                                    | ×                                                                                                         | ×                                                                                                                                                             | ×                                                                                                                                                                   | downstream                                                      | ×                                                                                                                                                                | Local/downstream                                                                                                                                                            | ×                                                                                                                                           |
|                          | Approach             | Operates at<br>a predefined<br>capacity<br>based on<br>measured<br>HOV lanes<br>flow | Maintains the<br>merge area<br>occupancy<br>below a<br>critical value<br>using a<br>feedback<br>mechanism | Adjusts metering rates<br>to maintain<br>occupancies of local<br>and several<br>downstream stations<br>below critical values<br>using a feedback<br>mechanism | Adjusts metering<br>rates using<br>offline optimized<br>rates for local<br>condition, and<br>using a feedback<br>mechanism<br>considering<br>downstream<br>capacity | Adjusts<br>metering<br>rates based<br>on<br>downstream<br>speed | Adjusts metering rates<br>based on offline optimized<br>rates                                                                                                    | Adjusts metering<br>rates considering<br>local speed and<br>occupancy,<br>downstream speed,<br>and upstream<br>occupancy                                                    | Adjusts metering rates<br>considering local and<br>downstream<br>occupancies                                                                |
| Extendible               | to mainline metering | √                                                                                    | √                                                                                                         | ✓                                                                                                                                                             | √                                                                                                                                                                   | ×                                                               | √                                                                                                                                                                | ✓                                                                                                                                                                           | ✓                                                                                                                                           |
| Sufficient i             | nformation available | √                                                                                    | √                                                                                                         | ~                                                                                                                                                             | √                                                                                                                                                                   | $\checkmark$                                                    | ×                                                                                                                                                                | ~                                                                                                                                                                           | ×                                                                                                                                           |
| Recomme                  | nded for Evaluation  | Yes                                                                                  | Yes                                                                                                       | Yes                                                                                                                                                           | Yes                                                                                                                                                                 | No                                                              | No                                                                                                                                                               | Yes                                                                                                                                                                         | No                                                                                                                                          |
|                          | Rationale            | Base line<br>algorithm                                                               | Robust<br>algorithm<br>based on<br>feedback<br>control.                                                   | Extension of ALINEA<br>which considers the<br>downstream capacity<br>(traffic condition on the<br>bridge)                                                     | Two level<br>optimization<br>technique as<br>combination of<br>offline rates and<br>feedback<br>mechanism                                                           | Only based<br>on<br>downstream<br>speed                         | Requires calibration of a<br>lookup table based on<br>detector inputs from three<br>different locations.<br>Limited information is<br>available on the algorithm | Rule-based algorithm<br>based on natural<br>language.<br>Considers the<br>downstream, ramps,<br>and local conditions.<br>Flexibility to<br>add/evaluate<br>additional rules | Similar to Fuzzy Logic<br>Caltrans but does not<br>consider ramps<br>conditions. Limited<br>information is<br>available on the<br>algorithm |

## **Existing System Elements**



## **Proposed System Elements**

