Active Traffic Management for Arterials

NCHRP Synthesis 447

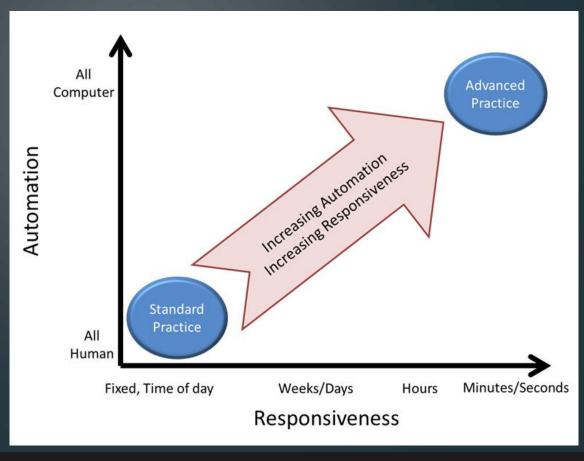
Authored by: Richard Dowling & Aaron Elias

Presented by: Aaron Elias

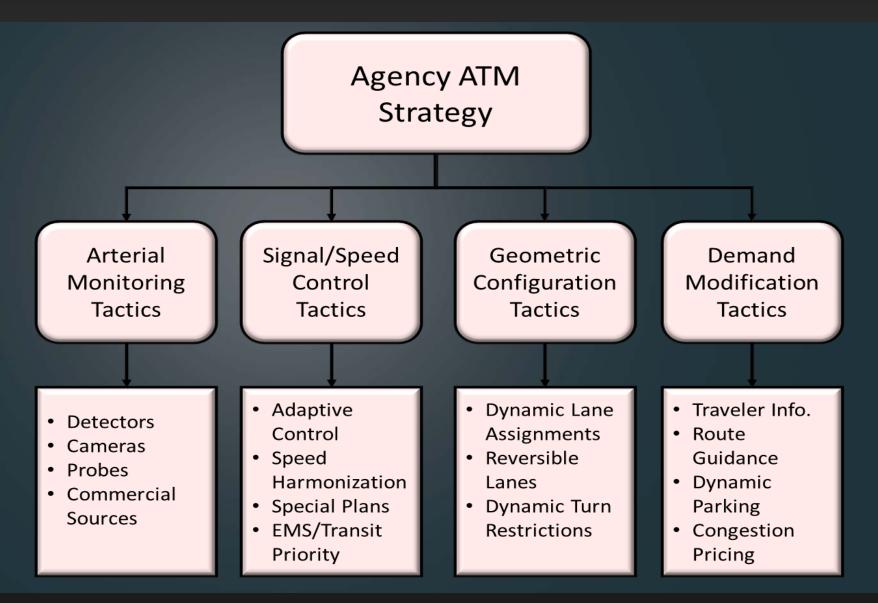
Date: September 30, 2015

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

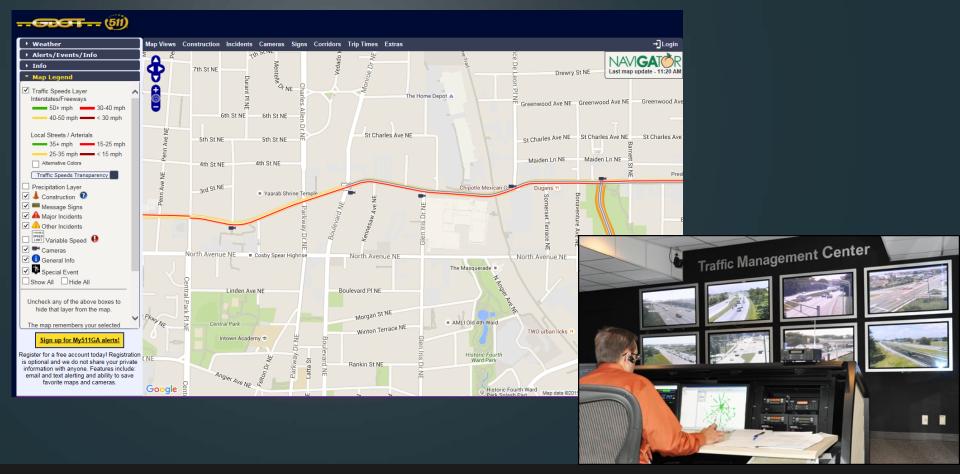
Active Traffic Management for Arterials



A Synthesis of Highway Practice


TRANSPORTATION RESEARCH BOARD
OF THE NATIONAL ACADEMIES

Active Traffic Management Strategies


Objective: Maximize productivity (capacity) and minimize cost (delay, stops)

ATM Arterial Tactics

ARTERIAL MONITORING TACTICS

Arterial Monitoring

- Overview: Use of technology to monitor and collect real time traffic data
 - Provides detailed traffic data
 - Data can be used for additional traffic studies or for third party apps
- Data collection technology includes:

Arterial Monitoring Example Application

Bluetooth Arterial Monitoring

- Cobb County, Georgia
 - Overview:
 - Use Bluetooth to collect TT data on 3 corridors
 - Usage:
 - Before/after studies of signal retiming
 - Increased awareness by EMS
 - Lessons Learned:
 - Size the system appropriately
 - Work with vendor to develop performance measures

Arterial Monitoring Example Application

Intersection Count Monitoring

- City of Bellevue, Washington
 - Overview:
 - Collects data at more than 110 intersections
 - Usage:
 - Better respond to citizen complaints
 - Availability of extensive 24-hr vehicle data
 - Lessons Learned
 - Understand how equipment collects and reports data
 - Useful for planning signal timing changes

SIGNAL CONTROL TACTICS

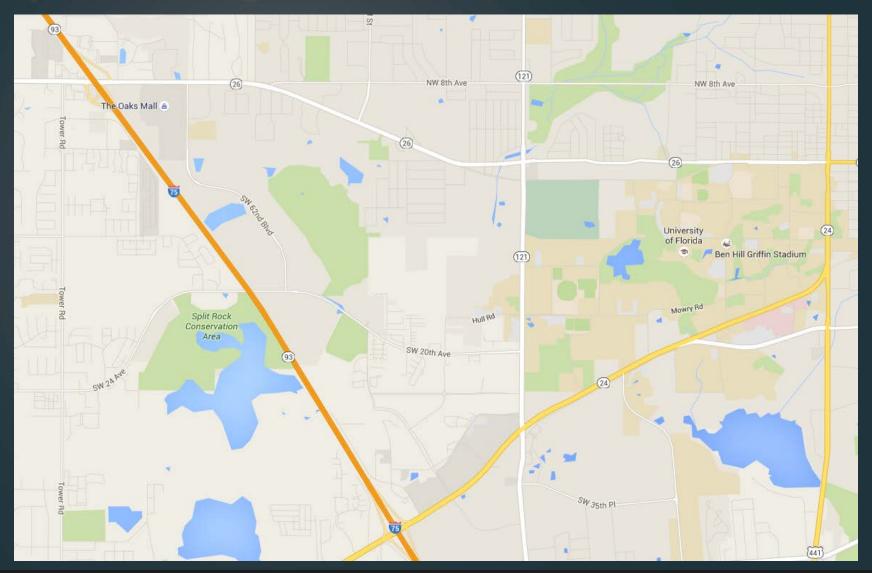
Signal Control Tactics

- Adaptive Control
 - System controller given flexibility to identify green times and offsets on the fly
 - Focus of NCHRP Synthesis 403 (2010)
- Specialized Signal Timing Plans
 - Developed to deal with special events
- > EMS/Transit Priority
 - Works within existing timing plan to improve EMS/transit operations

Signal Control Example Application

Specialized Timing Plans

- City of Gainesville, Florida
 - Overview:

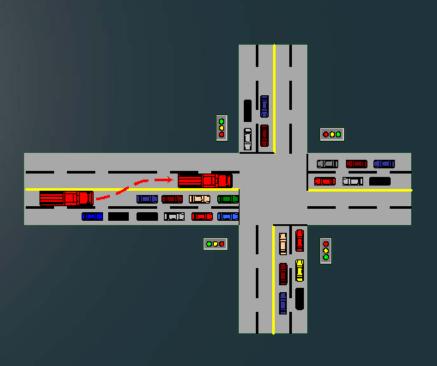


- Timing plans affecting >40 intersections for events
- Usage:
 - Reduces duration of congestion
 - Reduced queue spillback onto interstate
- Lessons Learned:
 - Special timing plans take several iterations to tweak
 - Every event is different

Signal Control Example Application

Specialized Timing Plans

Signal Control Example Application EMS Priority


- Harris County, Texas
 - Overview:
 - Installed EMS priority signal system at 50 intersections
 - Usage:
 - Allows signal and EMS vehicles to communicate location data
 - Reduces the "wave" effect of EMS vehicles
 - Lessons Learned
 - Communication with intended users is key

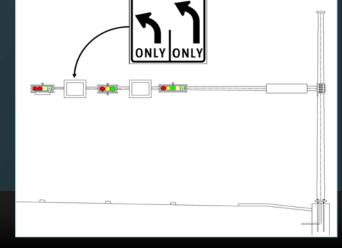
Signal Control Example Application EMS Priority

Harris County, Texas

GEOMETRIC CONFIGURATION TACTICS

Geometric Configuration Tactics

- Dynamic Lane Assignment
 - Allows agencies to change lane assignments to meet different demands



Geometric Configuration Application

Dynamic Lane Assignment

- Harris County, Texas
 - Overview:
 - Implementing dynamic lane assignment
 - Usage:
 - Used to better handle varying traffic patterns
 - Lessons Learned:
 - A lot of planning is needed to overcome technical

challenges

Geometric Configuration Application

Dynamic Lane Assignment

Harris County, Texas

Geometric Configuration Tactics

- Reversible Lanes
 - Increased capacity in the peak direction

Geometric Configuration Application

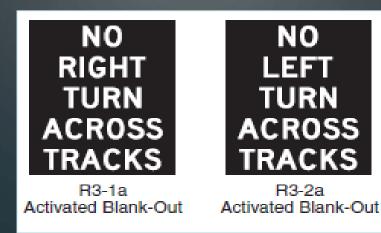
Reversible Lanes

- West Valley City, Utah
 - Overview:
 - DOT installed a reversible lane system on 5400 S
 - Usage:
 - Provides additional capacity without ROW acquisition
 - DOT wished to maintain TWLTL
 - Lessons Learned:
 - It is difficult to overcome the technical challenge of maintaining the TWLTL
 - Fully account and plan for your objective

Geometric Configuration Application

Reversible Lanes

West Valley City, Utah



Geometric Configuration Tactics

Dynamic Turn Restrictions

Restricts certain movements only when necessary such as:

- During a pedestrian scramble
- RTOR with a heavy volume U-turn

Geometric Configuration Application

Dynamic Turn Restrictions

- City of Overland Park, Kansas
 - Overview:
 - Using dynamic turn restrictions at 6 locations
 - Usage:
 - Removal of overlap to favor u-turns
 - Reduced conflicts with fire trucks exiting the station
 - Turning restrictions for particular phases
 - Lessons Learned:
 - Spend time to understand how equipment operates

Geometric Configuration Application

Dynamic Turn Restrictions

> City of Overland Park, Kansas

DEMAND MODIFICATION TACTICS

Demand Modification Tactics

- Overview: Use of various tactics to better manage vehicle demand
- Demand modification tactics include:
 - Arterial Travel Information Dissemination
 - Dynamic Route Guidance
 - Dynamic Parking Management
 - Congestion Pricing

Demand Modification Tactics Application

Dynamic Parking Management

- City of Seattle, Washington
 - Overview:
 - City allocates an annual budget to perform a study and set parking rates
 - Findings:
 - Decreasing rates does not always increase occupancy
 - Originally divided into 22 neighborhoods, additional subdivision is needed
 - Lessons Learned:
 - Support/discussion with many stakeholders is useful
 - Required significant technology to make data useful

CONCLUSIONS

Conclusions

Successful ATM Deployments

- Need for dynamic management of arterial ops
 - Recurring/non-recurring congestion
 - Limited capacity improvement options
- Agency with sufficient M/O resources including:
 - Staff/consultant expertise
 - Budget to tweak and maintain

Conclusions

Successful ATM Deployments

- Active participation and coordination among stakeholders including:
 - Staff
 - Politicians
 - Community

Conclusions

Successful ATM Deployments

- Detailed Planning and Design
 - Accurate inventory of infrastructure needs
 - Recognition technology is not perfect
 - Consideration of project on maintenance costs
 - Easy to underestimate required costs (capital/maintenance)

Aaron Elias

Senior Engineer

Kittelson & Associates
(510) 433-8077

aelias@kittelson.com